-
1
-
-
0000582521
-
Statistical analysis of nonlattice data
-
J. Besag, Statistical analysis of nonlattice data, The Statistician 24 (1975), 179-195.
-
(1975)
The Statistician
, vol.24
, pp. 179-195
-
-
Besag, J.1
-
2
-
-
0036567524
-
Learning Bayesian networks from data: An information-theory based approach
-
DOI 10.1016/S0004-3702(02)00191-1, PII S0004370202001911
-
J. Cheng, R. Greiner, J. Kelly, D. Bell and D. Liu, Learning belief networks from data: An information theory based approach, Artificial Intelligence 137 (2002), 43-90. (Pubitemid 34405215)
-
(2002)
Artificial Intelligence
, vol.137
, Issue.1-2
, pp. 43-90
-
-
Cheng, J.1
Greiner, R.2
Kelly, J.3
Bell, D.4
Liu, W.5
-
4
-
-
33646082044
-
On the incompatibility of faithfulness and monotone DAG faithfulness
-
D.M. Chickering and C. Meek, On the incompatibility of faithfulness and monotone DAG faithfulness, Artificial Intelligence 170 (2006), 653-666.
-
(2006)
Artificial Intelligence
, vol.170
, pp. 653-666
-
-
Chickering, D.M.1
Meek, C.2
-
5
-
-
34249832377
-
ABayesianmethod for the induction of probabilistic networks fromdata
-
G. Cooper and E.Herskovits, ABayesianmethod for the induction of probabilistic networks fromdata,Machine Learning 9 (1992), 309-347.
-
(1992)
Machine Learning
, vol.9
, pp. 309-347
-
-
Cooper, G.1
Herskovits, E.2
-
6
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
J. Demšar, Statistical Comparisons of Classifiers overMultiple Data Sets, Journal ofMachine Learning Research (2006), 1-30. (Pubitemid 43022939)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
7
-
-
0037262841
-
Being Bayesian about network structure. A Bayesian approach to structure discovery in bayesian networks
-
N. Friedman and D. Koller, Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks, Machine Leraning 50(1-2) (2003), 95-125.
-
(2003)
Machine Leraning
, vol.50
, Issue.1-2
, pp. 95-125
-
-
Friedman, N.1
Koller, D.2
-
8
-
-
0031276011
-
Bayesian Network Classifiers
-
N. Friedman, D. Geiger and M. Goldszmidt, Bayesian Network Classifiers, Machine Learning 29 (1997), 131-163. (Pubitemid 127510036)
-
(1997)
Machine Learning
, vol.29
, Issue.2-3
, pp. 131-163
-
-
Friedman, N.1
Geiger, D.2
Goldszmidt, M.3
-
9
-
-
79957788982
-
-
8th International Symposium on Intelligent Data Analysis, Lyon (France), September
-
T. Grégory, A. Alex and B. Stéphane, Incremental Bayesian Network Learning for Scalable Feature Selection, 8th International Symposium on Intelligent Data Analysis, Lyon (France), September 2009.
-
(2009)
Incremental Bayesian Network Learning for Scalable Feature Selection
-
-
Grégory, T.1
Alex, A.2
Stéphane, B.3
-
11
-
-
34249761849
-
Learning bayesian models: The combination knowledge and statistical data
-
D. Herckerman, D. Geiger and D. Chickering, Learning Bayesian Models: The Combination Knowledge and Statistical Data, Machine Learning 20 (1995), 197-243.
-
(1995)
Machine Learning
, vol.20
, pp. 197-243
-
-
Herckerman, D.1
Geiger, D.2
Chickering, D.3
-
12
-
-
34447281088
-
Towards efficient variables ordering for Bayesian Networks Classifier optimization
-
J.R. Hruschka, E.R., N.F.F. Ebecken, Towards efficient variables ordering for Bayesian Networks Classifier optimization, Data & Knowledge Engineering 63 (2007), 258-269.
-
(2007)
Data & Knowledge Engineering
, vol.63
, pp. 258-269
-
-
Hruschka, J.R.1
Ebecken, E.R.N.F.F.2
-
13
-
-
0242563303
-
Missing values prediction with K2. Intelligent data analysis journal (IDA)
-
E.R. Hruschka, Jr. and N.F.F. Ebecken, Missing Values prediction with K2. Intelligent Data Analysis Journal (IDA), Netherlands 6(6) (2002), 557-566.
-
(2002)
Netherlands
, vol.6
, Issue.6
, pp. 557-566
-
-
Hruschka Jr., E.R.1
Ebecken, N.F.F.2
-
15
-
-
7444220224
-
-
Berlin: Springer Verlag
-
E.R. Hruschka, Jr., E.R. Hruschka and N.F.F. Ebecken, Feature Selection by Bayesian Networks Lecture Notes in Artificial Intelligence, Berlin: Springer-Verlag 3060 (2004), 370-379.
-
(2004)
Feature Selection by Bayesian Networks Lecture Notes in Artificial Intelligence
, vol.3060
, pp. 370-379
-
-
Hruschka Jr., E.R.1
Hruschka, E.R.2
Ebecken, N.F.F.3
-
16
-
-
21844467514
-
Loopy belief propagation: Convergence and effects of message errors
-
A.T. Ihler, J.W. Fischer, III. and A.S. Willsky, Loopy belief propagation: Convergence and effects of message errors, Journal of Machine Learning Research 6 (2005), 905-936.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 905-936
-
-
Ihler, A.T.1
Fischer III, J.W.2
Willsky, A.S.3
-
21
-
-
33846024557
-
Bayesian learning in undirected graphical models: Approximate MCMC algorithms
-
AUAI Press, Arlington, Virginia
-
I.Murray and Z. Ghahramani, Bayesian Learning in Undirected Graphical Models: Approximate MCMC Algorithms, In Proceedings of the 20th Conference on Uncertainty in Artificial intelligence, AUAI Press, Arlington, Virginia, pp. 392-399, 2004.
-
(2004)
Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence
, pp. 392-399
-
-
Murray, I.1
Ghahramani, Z.2
-
24
-
-
3843083955
-
Augmenting naive Bayes classifiers with statistical language models
-
F. Peng, D. Schuurmans and S.Wang, Augmenting Naive Bayes Classifierswith Statistical LanguageModels, Information Retrieval 7 (2004), 317-345. (Pubitemid 39046501)
-
(2004)
Information Retrieval
, vol.7
, Issue.3-4
, pp. 317-345
-
-
Peng, F.1
Schuurmans, D.2
Wang, S.3
-
25
-
-
0035283313
-
Robust classification for imprecise environments
-
DOI 10.1023/A:1007601015854
-
F. Provost and T. Fawcett, Robust Classification for Imprecise Environments, Machine Learning 42 (2001), 203-231. (Pubitemid 32188799)
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 203-231
-
-
Provost, F.1
Fawcett, T.2
-
26
-
-
32044466073
-
Markov logic networks
-
DOI 10.1007/s10994-006-5833-1
-
M. Richardson and P. Domingos, Markov logic networks, Machine Learning 62(1-2) (2006), 107-136. (Pubitemid 43202307)
-
(2006)
Machine Learning
, vol.62
, Issue.1-2 SPEC. ISS.
, pp. 107-136
-
-
Richardson, M.1
Domingos, P.2
-
28
-
-
70350314967
-
Improving bayesian network structure learning with mutual informationbased node ordering in the K2 algorithm
-
May
-
C. XueWen, A. Gopalakrishna and L. Xiaotong, Improving Bayesian Network Structure Learning with Mutual InformationBased Node Ordering in the K2 Algorithm, IEEE Transactions on Knowledge and Data Engineering 20(5) (May 2008), 628-640.
-
(2008)
IEEE Transactions on Knowledge and Data Engineering
, vol.20
, Issue.5
, pp. 628-640
-
-
Xue-Wen, C.1
Gopalakrishna, A.2
Xiaotong, L.3
|