메뉴 건너뛰기




Volumn 5, Issue 2, 2011, Pages 146-155

Long term prediction of tidal currents

Author keywords

Harmonic analysis of tides; marine energy; neural networks; prediction; tidal current

Indexed keywords

EQUIVALENT WIND; LONG TERM; LONG-TERM PREDICTION; MARINE ENERGY; MODEL FREE; POWER DENSITIES; PREDICTION; PREDICTION METHODS; RENEWABLE RESOURCE; RENEWABLES; SHORT TERM; TIDAL CURRENTS; TIDAL ENERGY;

EID: 79957764705     PISSN: 19328184     EISSN: 19379234     Source Type: Journal    
DOI: 10.1109/JSYST.2010.2090401     Document Type: Article
Times cited : (22)

References (31)
  • 3
    • 57849095741 scopus 로고    scopus 로고
    • Wind speed conformal prediction in wind farm based on algorithmic randomness theory
    • J. Guo-Rui et al., "Wind speed conformal prediction in wind farm based on algorithmic randomness theory," in 2008 Int. Conf. Machine Learning and Cybernetics , 2008.
    • (2008) 2008 Int. Conf. Machine Learning and Cybernetics
    • Guo-Rui, J.1
  • 4
    • 63049116335 scopus 로고    scopus 로고
    • A new ANN-based methodology for very short-term wind speed prediction using markov chain approach
    • Canada
    • S. A. P. Kani and G. H. Riahy, "A new ANN-based methodology for very short-term wind speed prediction using markov chain approach," in Electric Power Conf. 2008, Canada, 2008.
    • (2008) Electric Power Conf. 2008
    • Kani, S.A.P.1    Riahy, G.H.2
  • 5
    • 60049084645 scopus 로고    scopus 로고
    • A review on the forecasting of wind speed and generated power
    • L.Ma et al., "A review on the forecasting of wind speed and generated power," Renew. Sustain. Energy Rev., vol. 13, no. 4, pp. 915-920, 2009.
    • (2009) Renew. Sustain. Energy Rev. , vol.13 , Issue.4 , pp. 915-920
    • Ma, L.1
  • 7
    • 50849132200 scopus 로고    scopus 로고
    • A literature review of wind forecasting technology in the world
    • Y. K. Wu and J. S. Hong, "A literature review of wind forecasting technology in the world," 2007 IEEE Lausanne Powertech, vol. 1-5, pp. 504-509, 2007.
    • (2007) 2007 IEEE Lausanne Powertech , vol.1-5 , pp. 504-509
    • Wu, Y.K.1    Hong, J.S.2
  • 8
    • 77951432699 scopus 로고    scopus 로고
    • Study on the methodology of short-term load forecasting considering the accumulation effect of temperature
    • New York
    • G. Y. Chen and J. T. Shi, "Study on the methodology of short-term load forecasting considering the accumulation effect of temperature," in 2009 Int. Conf. Sustainable Power Generation and Supply, New York, 2009, vol. 1-4, pp. 2383-2386.
    • (2009) 2009 Int. Conf. Sustainable Power Generation and Supply , vol.1-4 , pp. 2383-2386
    • Chen, G.Y.1    Shi, J.T.2
  • 9
    • 77955390140 scopus 로고    scopus 로고
    • Short-term load forecasting based on kernel conditional density estimation
    • G. Dudek, "Short-term load forecasting based on kernel conditional density estimation," Przeglad Elektrotechniczny, vol. 86, no. 8, pp. 164-167.
    • Przeglad Elektrotechniczny , vol.86 , Issue.8 , pp. 164-167
    • Dudek, G.1
  • 10
    • 77951475325 scopus 로고    scopus 로고
    • Application of improved adding-weight one-rank local-region method in electric power system short-term load forecasting
    • S. M. Kang et al., "Application of improved adding-weight one-rank local-region method in electric power system short-term load forecasting," in 2009 Int. Conf. Sustainable Power Generation and Supply, 2009, vol. 1-4, pp. 2528-2531.
    • (2009) 1 2009 Int. Conf. Sustainable Power Generation and Supply , vol.1-4 , pp. 2528-2531
    • Kang, S.M.1
  • 12
    • 77449152861 scopus 로고    scopus 로고
    • Power system load forecasting based on BEMPSO chaotic neural network
    • S. Guo, Ed. et al.
    • W. Liu et al., S. Guo, Ed. et al., "Power system load forecasting based on BEMPSO chaotic neural network," in 2009 Conf. Proc. IEEE Int. Conf. Mechatronics and Automation, 2009, vol. 1-7, pp. 4997-5001.
    • (2009) 2009 Conf. Proc. IEEE Int. Conf. Mechatronics and Automation , vol.1-7 , pp. 4997-5001
    • Liu, W.1
  • 13
    • 77954645253 scopus 로고    scopus 로고
    • Application of short-term load forecasting based on improved gray-markov residuals amending of BP neural network
    • Y. Tan, Y. H. Shi, and K. C. Tan, Eds.
    • D. X. Niu et al., "Application of Short-Term Load Forecasting Based on Improved Gray-Markov Residuals Amending of BP Neural Network," in Proc. Advances in Swarm Intelligence, Pt. 2, Y. Tan, Y. H. Shi, and K. C. Tan, Eds., 2010, vol. 6146, pp. 564-569.
    • (2010) Proc. Advances in Swarm Intelligence Pt. 2 , vol.6146 , pp. 564-569
    • Niu, D.X.1
  • 14
    • 70449360948 scopus 로고    scopus 로고
    • Very short-term electricity load demand forecasting using support vector regression, in Ijcnn
    • A. Setiawan et al., "Very short-term electricity load demand forecasting using support vector regression, in Ijcnn," in 2009 Int. Joint Conf. Neural Networks, 2009, vol. 1-6, pp. 3348-3354.
    • (2009) 2009 Int. Joint Conf. Neural Networks , vol.1-6 , pp. 3348-3354
    • Setiawan, A.1
  • 15
    • 77955369058 scopus 로고    scopus 로고
    • Long-term forecasting method of annual electrical energy demand in electric distribution companies
    • M. Parol and P. Piotrowski, "Long-term forecasting method of annual electrical energy demand in electric distribution companies," Przeglad Elektrotechniczny, vol. 86, no. 8, pp. 182-186.
    • Przeglad Elektrotechniczny , vol.86 , Issue.8 , pp. 182-186
    • Parol, M.1    Piotrowski, P.2
  • 16
    • 57849150516 scopus 로고    scopus 로고
    • A long-term electrical power load forecastingmodel based on grey feed-back modification
    • C. He-Rui, "A long-term electrical power load forecastingmodel based on grey feed-back modification," in 2008 Int. Conf. Machine Learning and Cybernetics, 2008.
    • (2008) 2008 Int. Conf. Machine Learning and Cybernetics
    • He-Rui, C.1
  • 18
    • 29444457388 scopus 로고    scopus 로고
    • Locally recurrent neural networks for long-term wind speed and power prediction
    • DOI 10.1016/j.neucom.2005.02.003, PII S0925231205000408
    • T. G. Barbounis and J. B. Theocharis, "Locally recurrent neural networks for long-term wind speed and power prediction," Neurocomputing, vol. 69, no. 4-6, pp. 466-496, 2006. (Pubitemid 43009122)
    • (2006) Neurocomputing , vol.69 , Issue.4-6 , pp. 466-496
    • Barbounis, T.G.1    Theocharis, J.B.2
  • 20
    • 78649628801 scopus 로고    scopus 로고
    • Comparison of different techniques for short term prediction of tidal current speed
    • Minneapolis
    • M. J. Jahromi and A. I. M. K. Tseng, "Comparison of Different Techniques for Short Term Prediction of Tidal Current Speed," in IEEE Power Energy Soc. General Meeting, Minneapolis, 2010.
    • (2010) IEEE Power Energy Soc. General Meeting
    • Jahromi, M.J.1    Tseng, A.I.M.K.2
  • 21
    • 79957703487 scopus 로고    scopus 로고
    • NOAA Official (Cited, National Oceanic and Atmospheric Administration)
    • NOAA Official (Cited 2010; National Oceanic and Atmospheric Administration) NOAA [Online]. Available: http://tidesandcurrents.noaa. gov/ncop.html
    • (2010) NOAA
  • 24
    • 0032122184 scopus 로고    scopus 로고
    • Short-term forecasting of wind speed and related electrical power
    • DOI 10.1016/S0038-092X(98)00032-2, PII S0038092X98000322
    • M. C. Alexiadis et al., "Short-term forecasting of wind speed and related electrical power," Solar Energy, vol. 63, no. 1, pp. 61-68, 1998. (Pubitemid 28397933)
    • (1998) Solar Energy , vol.63 , Issue.1 , pp. 61-68
    • Alexiadis, M.C.1    Dokopoulos, P.S.2    Sahsamanoglou, H.S.3    Manousaridis, I.M.4
  • 25
    • 0032029065 scopus 로고    scopus 로고
    • A neural networks approach for wind speed prediction
    • DOI 10.1016/S0960-1481(98)00001-9, PII S0960148198000019
    • M. A.Mohandes, S. Rehman, and T. O. Halawani, "A neural networks approach for wind speed prediction," Renew. Energy, vol. 13, no. 3, pp. 345-354, 1998. (Pubitemid 28426003)
    • (1998) Renewable Energy , vol.13 , Issue.3 , pp. 345-354
    • Mohandes, M.A.1    Rehman, S.2    Halawani, T.O.3
  • 26
    • 0034286972 scopus 로고    scopus 로고
    • A comparison of various forecasting techniques applied to mean hourly wind speed time series
    • DOI 10.1016/S0960-1481(99)00125-1, PII S0960148199001251
    • A. Sfetsos, "A comparison of various forecasting techniques applied to mean hourly wind speed time series," Renew. Energy, vol. 21, no. 1, pp. 23-35, 2000. (Pubitemid 30306417)
    • (2000) Renewable Energy , vol.21 , Issue.1 , pp. 23-35
    • Sfetsos, A.1
  • 27
    • 2942570109 scopus 로고    scopus 로고
    • A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation
    • I. G. Damousis et al., "A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation," IEEE Trans. Energy Conv., vol. 19, pp. 352-361, 2004.
    • (2004) IEEE Trans. Energy Conv. , vol.19 , pp. 352-361
    • Damousis, I.G.1
  • 29
    • 0032626356 scopus 로고    scopus 로고
    • Blind system identification and channel equalization of IIR systems without statistical information
    • E. Bai and M. Fu, "Blind system identification and channel equalization of IIR systems without statistical information," IEEE Trans. Signal Process., vol. 47, pp. 1910-1921, 1999.
    • (1999) IEEE Trans. Signal Process. , vol.47 , pp. 1910-1921
    • Bai, E.1    Fu, M.2
  • 31
    • 33750332010 scopus 로고    scopus 로고
    • Prediction and analysis of tides and tidal currents
    • J. J. Shu, "Prediction and analysis of tides and tidal currents," Int. Hydrographic Rev., vol. 4, no. 2, p. 6, 2003.
    • (2003) Int. Hydrographic Rev. , vol.4 , Issue.2 , pp. 6
    • Shu, J.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.