메뉴 건너뛰기




Volumn 33, Issue 15, 2011, Pages 1463-1473

Prediction of liquid and vapor enthalpies of ammonia-water mixture

Author keywords

ammonia water; liquid enthalpy; neural network; thermodynamic properties; vapor enthalpy

Indexed keywords

ABSORPTION CHILLERS; ALTERNATIVE METHODS; AMMONIA WATER; AMMONIA-WATER MIXTURE; ARTIFICIAL NEURAL NETWORK; CORRELATION COEFFICIENT; LIQUID ENTHALPY; WORKING FLUID;

EID: 79957523432     PISSN: 15567036     EISSN: 15567230     Source Type: Journal    
DOI: 10.1080/15567030903397891     Document Type: Article
Times cited : (7)

References (18)
  • 1
    • 0003842308 scopus 로고    scopus 로고
    • ASHRAE. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc
    • ASHRAE. 1997. ASHRAE Handbook-Fundamentals. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
    • (1997) ASHRAE Handbook-Fundamentals
  • 2
    • 0035372175 scopus 로고    scopus 로고
    • New approach to dynamic modelling of vapour-compression liquid chillers: Artificial neural networks
    • DOI 10.1016/S1359-4311(00)00093-4, PII S1359431100000934
    • Bechtler, H., Browne, M. W., Bansal, P. K., and Kecman, V. 2001. New approach to dynamic modelling of vapour-compression liquid chillers: Artificial neural networks. Appl. Therm. Eng. 21:941-953. (Pubitemid 32272869)
    • (2001) Applied Thermal Engineering , vol.21 , Issue.9 , pp. 941-953
    • Bechtler, H.1    Browne, M.W.2    Bansal, P.K.3    Kecman, V.4
  • 3
    • 0037199062 scopus 로고    scopus 로고
    • Modeling of thermodynamic properties using neural networks: Application to refrigerants
    • DOI 10.1016/S0378-3812(01)00801-9, PII S0378381201008019
    • Chouai, A., Laugier, S., and Richon, D. 2002. Modeling of thermodynamic properties using neural networks application to refrigerants. Fluid Phase Equilib. 199:53-62. (Pubitemid 34621375)
    • (2002) Fluid Phase Equilibria , vol.199 , Issue.1-2 , pp. 53-62
    • Chouai, A.1    Laugier, S.2    Richon, D.3
  • 4
    • 51249105578 scopus 로고    scopus 로고
    • Performance analysis and evaluation of a commercial absorption- refrigeration water-ammonia (ARWA) system
    • Darwish, N. A., Al-Hashimi, S. H., and Al-Mansoori, A. S. 2008. Performance analysis and evaluation of a commercial absorption-refrigeration water-ammonia (ARWA) system. Int. J. Ref. 31:1214-1223.
    • (2008) Int. J. Ref. , vol.31 , pp. 1214-1223
    • Darwish, N.A.1    Al-Hashimi, S.H.2    Al-Mansoori, A.S.3
  • 5
    • 62749159467 scopus 로고    scopus 로고
    • Estimation of thermal conductivity of pure gases by using artificial neural networks
    • Eslamloueyan, R., and Khademi, M. H. 2009. Estimation of thermal conductivity of pure gases by using artificial neural networks. Intl. J. Therm. Sci. 48:1094-1101.
    • (2009) Intl. J. Therm. Sci. , vol.48 , pp. 1094-1101
    • Eslamloueyan, R.1    Khademi, M.H.2
  • 9
    • 0034963531 scopus 로고    scopus 로고
    • Artificial neural networks in renewable energy systems applications: A review
    • Kalogirou, S. A. 2000a. Artificial neural networks in renewable energy systems applications: A review. Renew. Sustain. Energy Rev. 5:373-401.
    • (2000) Renew. Sustain. Energy Rev. , vol.5 , pp. 373-401
    • Kalogirou, S.A.1
  • 10
    • 0034192268 scopus 로고    scopus 로고
    • Long-term performance prediction of forced circulation solar domestic water heating systems using artificial neural networks
    • DOI 10.1016/S0306-2619(99)00042-2, PII S0306261999000422
    • Kalogirou, S. A. 2000b. Long-term performance prediction of forced circulation solar domestic water heating systems using artificial neural networks. Appl. Energy 66:63-74. (Pubitemid 30157339)
    • (2000) Applied Energy , vol.66 , Issue.1 , pp. 63-74
    • Kalogirou, S.A.1
  • 11
    • 63349089045 scopus 로고    scopus 로고
    • Prediction of solid vapor pressures for organic and inorganic compounds using a neural network
    • Lazzús, J. A. 2009. Prediction of solid vapor pressures for organic and inorganic compounds using a neural network. Thermochimica Acta 489:53-62.
    • (2009) Thermochimica Acta , vol.489 , pp. 53-62
    • Lazzús, J.A.1
  • 12
  • 13
    • 0035129451 scopus 로고    scopus 로고
    • Neural network analysis of fin-tube refrigerating heat exchanger with limited experimental data
    • DOI 10.1016/S0017-9310(00)00139-3, PII S0017931000001393
    • Pacheco-Vega, A., Sen, M., Yang, K. T., and McClain, R. L. 2001. Neural network analysis of fintube refrigerating heat exchanger with limited experimental data. Int. J. Heat & Mass Transfer 44:763-770. (Pubitemid 32152907)
    • (2001) International Journal of Heat and Mass Transfer , vol.44 , Issue.4 , pp. 763-770
    • Pacheco-Vega, A.1    Sen, M.2    Yang, K.T.3    McClain, R.L.4
  • 14
    • 17144452705 scopus 로고    scopus 로고
    • Performance analysis of ejector absorption heat pump using ozone safe fluid couple through artificial neural networks
    • Sözen, A., Arcaklioǧlu, E., and özalp, M. 2004a. Performance analysis of ejector absorption heat pump using ozone safe fluid couple through artificial neural networks. Energy Convers. Manage. 45:2233-2253.
    • (2004) Energy Convers. Manage. , Issue.45 , pp. 2233-2253
    • Sözen, A.1    Arcaklioǧlu, E.2    Özalp, M.3
  • 15
    • 4243075455 scopus 로고    scopus 로고
    • Investigation of thermodynamic properties of refrigerant/absorbent couples using artificial neural networks
    • DOI 10.1016/j.cep.2003.12.008, PII S0255270104000133
    • Sözen, A., özalp, M., and Arcaklioǧlu, E. 2004b. Investigation of thermodynamic properties of refrigerant/absorbent couples using artificial neural networks. Chem. Eng. Proc. 43:1253-1264. (Pubitemid 39112634)
    • (2004) Chemical Engineering and Processing: Process Intensification , vol.43 , Issue.10 , pp. 1253-1264
    • Sozen, A.1    Ozalp, M.2    Arcaklioglu, E.3
  • 16
    • 3543128236 scopus 로고    scopus 로고
    • Modelling (using artificial neural-networks) the performance parameters of a solar-driven ejector-absorption cycle
    • DOI 10.1016/j.apenergy.2003.12.012, PII S0306261904000029
    • Sözen, A., and Akçayol, M. A. 2004. Modelling (using artificial neural-networks) the performance parameters of a solar-driven ejector-absorption cycle. Appl. Energy 79:309-325. (Pubitemid 39026948)
    • (2004) Applied Energy , vol.79 , Issue.3 , pp. 309-325
    • Sozen, A.1    Akcayol, M.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.