메뉴 건너뛰기




Volumn 47, Issue 5, 2011, Pages

Correcting the mathematical structure of a hydrological model via Bayesian data assimilation

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN ESTIMATIONS; CONCEPTUAL MODEL; DATA ASSIMILATION; HISTORICAL DATA; HISTORICAL OBSERVATION; HYDROLOGICAL MODELING; HYDROLOGICAL MODELS; INTUITIVE PROCESS; MATHEMATICAL FORMS; MATHEMATICAL STRUCTURE; MODEL EQUATIONS; MODEL IDENTIFICATION; PREDICTION UNCERTAINTY; RIVER CATCHMENT; SPATIO-TEMPORAL SCALE; STRUCTURAL EQUATIONS;

EID: 79957517768     PISSN: 00431397     EISSN: None     Source Type: Journal    
DOI: 10.1029/2010WR009614     Document Type: Article
Times cited : (54)

References (51)
  • 1
    • 33645535077 scopus 로고    scopus 로고
    • Neural error regression analysis (NERD): A tool for model bias identification and prognostic data assimilation
    • doi:10.1175/JHM479.1
    • Abramowitz, G., H. Gupta, A. Pitman, Y. Wang, R. Leuning, H. Cleugh, and K. Hsu (2006), Neural error regression analysis (NERD): A tool for model bias identification and prognostic data assimilation, J. Hydrometeorol., 7(1), 160-177, doi:10.1175/JHM479.1.
    • (2006) J. Hydrometeorol. , vol.7 , Issue.1 , pp. 160-177
    • Abramowitz, G.1    Gupta, H.2    Pitman, A.3    Wang, Y.4    Leuning, R.5    Cleugh, H.6    Hsu, K.7
  • 2
    • 0000708831 scopus 로고
    • Mixture of Dirichlet processes with application to Bayesian nonparametric problems
    • doi:10.1214/aos/1176342871
    • Antoniak, C. (1974), Mixture of Dirichlet processes with application to Bayesian nonparametric problems, Ann. Stat., 2, 1152-1174, doi:10.1214/aos/ 1176342871.
    • (1974) Ann. Stat. , vol.2 , pp. 1152-1174
    • Antoniak, C.1
  • 3
    • 0034508765 scopus 로고    scopus 로고
    • Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods
    • DOI 10.1029/2000WR900207
    • Boyle, D. P., H. V. Gupta, and S. Sorooshian (2000), Toward improved calibration of hydrological models: Combining the strengths of manual and automatic methods, Water Resour. Res., 36, 3663-3674, doi:10.1029/2000WR900207. (Pubitemid 32039916)
    • (2000) Water Resources Research , vol.36 , Issue.12 , pp. 3663-3674
    • Boyle, D.P.1    Gupta, H.V.2    Sorooshian, S.3
  • 6
    • 72149123038 scopus 로고    scopus 로고
    • Estimating the uncertain mathematical structure of a water balance model via Bayesian data assimilation
    • doi:10.1029/2007WR006749
    • Bulygina, N., and H. Gupta (2009), Estimating the uncertain mathematical structure of a water balance model via Bayesian data assimilation, Water Resour. Res., 45, W00B13, doi:10.1029/2007WR006749.
    • (2009) Water Resour. Res. , vol.45
    • Bulygina, N.1    Gupta, H.2
  • 7
    • 77954427278 scopus 로고    scopus 로고
    • How Bayesian data assimilation can be used to estimate the mathematical structure of a model
    • Bulygina, N., and H. Gupta (2010), How Bayesian data assimilation can be used to estimate the mathematical structure of a model, Stochastic Environ. Res. Risk Assess., 24, 925-937.
    • (2010) Stochastic Environ. Res. Risk Assess. , vol.24 , pp. 925-937
    • Bulygina, N.1    Gupta, H.2
  • 8
    • 0032439201 scopus 로고    scopus 로고
    • Analysis scheme in the ensemble Kalman filter
    • Burgers, G., P. van Leeuwen, and G. Evensen (1998), Analysis scheme in the ensemble Kalman filter, Mon. Weather Rev., 126(6), 1719-1724, doi:10.1175/1520-0493(1998)1262.0.CO;2. (Pubitemid 128597660)
    • (1998) Monthly Weather Review , vol.126 , Issue.6 , pp. 1719-1724
    • Burgers, G.1    Van Leeuwen, P.J.2    Evensen, G.3
  • 10
    • 84937730674 scopus 로고
    • Explaining the Gibbs sampler
    • doi:10.2307/2685208
    • Casella, G., and E. George (1992), Explaining the Gibbs sampler, Am. Stat., 46, 167-174, doi:10.2307/2685208.
    • (1992) Am. Stat. , vol.46 , pp. 167-174
    • Casella, G.1    George, E.2
  • 11
    • 51349141022 scopus 로고    scopus 로고
    • Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models
    • doi:10.1029/2007WR006735
    • Clark, M., A. Slater, D. Rupp, R. Woods, J. Vrugt, H. Gupta, T. Wagener, and L. Hay (2008), Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models, Water Resour. Res., 44, W00B02, doi:10.1029/ 2007WR006735.
    • (2008) Water Resour. Res. , vol.44
    • Clark, M.1    Slater, A.2    Rupp, D.3    Woods, R.4    Vrugt, J.5    Gupta, H.6    Wagener, T.7    Hay, L.8
  • 12
    • 0003679224 scopus 로고
    • Digital simulation in hydrology: Stanford watershed model IV
    • Dep. of Civil Eng., Stanford Univ., Stanford, Calif
    • Crawford, N., and R. Linsley (1966), Digital simulation in hydrology: Stanford watershed model IV, Tech. Rep. 39, Dep. of Civil Eng., Stanford Univ., Stanford, Calif.
    • (1966) Tech. Rep. 39
    • Crawford, N.1    Linsley, R.2
  • 13
    • 75749139354 scopus 로고    scopus 로고
    • Uncertainty in river discharge observations: A quantitative analysis
    • doi:10.5194/hess-13-913-2009
    • Di Baldassarre, G., and M. Montanari (2009), Uncertainty in river discharge observations: A quantitative analysis, Hydrol. Earth Syst. Sci., 13, 913-921, doi:10.5194/hess-13-913-2009.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , pp. 913-921
    • Di Baldassarre, G.1    Montanari, M.2
  • 14
    • 77952859980 scopus 로고    scopus 로고
    • A short exploration of structural noise
    • doi:10.1029/2009WR008377
    • Doherty, J., and D. Welter (2010), A short exploration of structural noise, Water Resour. Res., 46, W05525, doi:10.1029/2009WR008377.
    • (2010) Water Resour. Res. , vol.46
    • Doherty, J.1    Welter, D.2
  • 15
    • 0028449781 scopus 로고
    • Optimal use of the SCE-UA global optimization method for calibrating watershed models
    • Duan, Q., S. Sorooshian, and V. Gupta (1994), Optimal use of the SCE-UA optimization method for calibrating watershed models, J. Hydrol., 158, 265-284, doi:10.1016/0022-1694(94)90057-4. (Pubitemid 281640)
    • (1994) Journal of Hydrology , vol.158 , Issue.3-4 , pp. 265-284
    • Qingyun Duan1    Sorooshian, S.2    Gupta, V.K.3
  • 16
    • 49449092825 scopus 로고    scopus 로고
    • Learning from model improvement: On the contribution of complementary data to process understanding
    • doi:10.1029/2007WR006386
    • Fenicia, F., J. J. McDonnell, and H. H. G. Savenije (2008), Learning from model improvement: On the contribution of complementary data to process understanding, Water Resour. Res., 44, W06419, doi:10.1029/ 2007WR006386.
    • (2008) Water Resour. Res. , vol.44
    • Fenicia, F.1    McDonnell, J.J.2    Savenije, H.H.G.3
  • 17
    • 0001787029 scopus 로고
    • Bayesian density estimation by mixture of normal distributions
    • edited by H. Rizvi and J. Rustagi,Academic, New York
    • Ferguson, T. S. (1983), Bayesian density estimation by mixture of normal distributions, in Recent Advances in Statistics, edited by H. Rizvi and J. Rustagi, pp. 287-302, Academic, New York.
    • (1983) Recent Advances in Statistics , pp. 287-302
    • Ferguson, T.S.1
  • 18
    • 84950453304 scopus 로고
    • Sampling based approaches to calculating marginal densities
    • doi:10.2307/2289776
    • Gelfand, A. E., and A. F. M. Smith (1990), Sampling based approaches to calculating marginal densities, J. Am. Stat. Assoc., 85, 398-409, doi:10.2307/2289776.
    • (1990) J. Am. Stat. Assoc. , vol.85 , pp. 398-409
    • Gelfand, A.E.1    Smith, A.F.M.2
  • 19
    • 0031922634 scopus 로고    scopus 로고
    • Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information
    • Gupta, H. V., S. Sorooshian, and P. O. Yapo (1998), Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information, Water Resour. Res., 34, 751-763, doi:10.1029/ 97WR03495. (Pubitemid 28159454)
    • (1998) Water Resources Research , vol.34 , Issue.4 , pp. 751-763
    • Gupta, H.V.1    Sorooshian, S.2    Yapo, P.O.3
  • 20
    • 49449115848 scopus 로고    scopus 로고
    • Reconciling theory with observations: Elements of a diagnostic approach to model evaluation
    • doi:10.1002/hyp.6989
    • Gupta, H., T. Wagener, and Y. Liu (2008), Reconciling theory with observations: Elements of a diagnostic approach to model evaluation, Hydrol. Processes, 22, 3802-3813, doi:10.1002/hyp.6989.
    • (2008) Hydrol. Processes , vol.22 , pp. 3802-3813
    • Gupta, H.1    Wagener, T.2    Liu, Y.3
  • 21
    • 33646510313 scopus 로고    scopus 로고
    • Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory
    • doi:10.1029/2005WR004368
    • Kavetski, D., G. Kuczera, and S. Franks (2006), Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory, Water Resour. Res., 42, W03407, doi:10.1029/2005WR004368.
    • (2006) Water Resour. Res. , vol.42
    • Kavetski, D.1    Kuczera, G.2    Franks, S.3
  • 22
    • 0035648165 scopus 로고    scopus 로고
    • Bayesian calibration of computer models
    • doi:10.1111/1467-9868.00294
    • Kennedy, M., and A. O'Hagan (2001), Bayesian calibration of computer models, J. R. Stat. Soc., B, 63(3), 425-464, doi:10.1111/1467-9868.00294.
    • (2001) J. R. Stat. Soc., B , vol.63 , Issue.3 , pp. 425-464
    • Kennedy, M.1    O'Hagan, A.2
  • 23
    • 33750474092 scopus 로고    scopus 로고
    • Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterising model error using storm-dependent parameters
    • DOI 10.1016/j.jhydrol.2006.05.010, PII S0022169406002745
    • Kuczera, G., D. Kavetski, S. Franks, and M. Thyer (2006), Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterizing model error using storm-dependent parameters, J. Hydrol., 331, 161-177, doi:10.1016/j.jhydrol.2006.05.010. (Pubitemid 44646456)
    • (2006) Journal of Hydrology , vol.331 , Issue.1-2 , pp. 161-177
    • Kuczera, G.1    Kavetski, D.2    Franks, S.3    Thyer, M.4
  • 24
    • 0001927585 scopus 로고
    • On information and sufficiency
    • doi:10.1214/aoms/1177729694
    • Kullback, S., and R. A. Leibler (1951), On information and sufficiency, Ann. Math. Stat., 22, 79-86, doi:10.1214/aoms/1177729694.
    • (1951) Ann. Math. Stat. , vol.22 , pp. 79-86
    • Kullback, S.1    Leibler, R.A.2
  • 25
    • 34248166114 scopus 로고    scopus 로고
    • Verification tools for probabilistic forecasts of continuous hydrological variables
    • Laio, F., and S. Tamea (2007), Verification tools for probabilistic forecasts of continuous hydrological variables, Hydrol. Earth Syst. Sci., 11, 1267-1277, doi:10.5194/hess-11-1267-2007. (Pubitemid 46707033)
    • (2007) Hydrology and Earth System Sciences , vol.11 , Issue.4 , pp. 1267-1277
    • Laio, F.1    Tamea, S.2
  • 26
    • 0028602239 scopus 로고
    • A simple hydrologically based model of land surface water and energy fluxes for general circulation models
    • doi:10.1029/94JD00483
    • Liang, X., D. Lettenmaier, E. Wood, and S. Burges (1994), A simple hydrologically based model of land surface water and energy fluxes for general circulation models, J. Geophys. Res., 99, 14,415-14,428, doi:10.1029/94JD00483.
    • (1994) J. Geophys. Res. , vol.99 , pp. 14415-14428
    • Liang, X.1    Lettenmaier, D.2    Wood, E.3    Burges, S.4
  • 27
    • 36648998731 scopus 로고    scopus 로고
    • Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework
    • DOI 10.1029/2006WR005756
    • Liu, Y., and H. Gupta (2007), Uncertainty in hydrologic modeling: Towards an integrated hierarchical data assimilation framework, Water Resour. Res., 43, W07401, doi:10.1029/2006WR005756. (Pubitemid 350194456)
    • (2007) Water Resources Research , vol.43 , Issue.7
    • Liu, Y.1    Gupta, H.V.2
  • 28
    • 77953706482 scopus 로고    scopus 로고
    • Impact of uncertain river flow data on rainfall-runoff model calibration and discharge predictions
    • McMillan, H., J. Freer, F. Peppenberger, T. Krueger, and M. Clark (2010), Impact of uncertain river flow data on rainfall-runoff model calibration and discharge predictions, Hydrol. Processes, 24, 1270-1284.
    • (2010) Hydrol. Processes , vol.24 , pp. 1270-1284
    • McMillan, H.1    Freer, J.2    Peppenberger, F.3    Krueger, T.4    Clark, M.5
  • 29
    • 33846362488 scopus 로고    scopus 로고
    • The PDM rainfall-runoff model
    • Moore, R. J. (2007), The PDM rainfall-runoff model, Hydrol. Earth Syst. Sci., 11, 483-499, doi:10.5194/hess-11-483-2007. (Pubitemid 46134785)
    • (2007) Hydrology and Earth System Sciences , vol.11 , Issue.1 , pp. 483-499
    • Moore, R.J.1
  • 30
    • 11944268965 scopus 로고    scopus 로고
    • Dual state-parameter estimation of hydrological models using ensemble Kalman filter
    • DOI 10.1016/j.advwatres.2004.09.002, PII S0309170804001605
    • Moradkhani, H., S. Sorooshian, H. Gupta, and P. Houser (2005), Dual state-parameter estimation of hydrological models using ensemble Kalman filter, Adv. Water Resour., 28(2), 135-147, doi:10.1016/j. advwatres.2004.09.002. (Pubitemid 40102390)
    • (2005) Advances in Water Resources , vol.28 , Issue.2 , pp. 135-147
    • Moradkhani, H.1    Sorooshian, S.2    Gupta, H.V.3    Houser, P.R.4
  • 31
    • 0002881872 scopus 로고    scopus 로고
    • Bayesian curve fitting using multivariate normal mixtures
    • doi:10.1093/biomet/83.1.67
    • Muller, P., A. Erkanli, and M. West (1996), Bayesian curve fitting using multivariate normal mixtures, Biometrika, 83(1), 67-79, doi:10.1093/ biomet/83.1.67.
    • (1996) Biometrika , vol.83 , Issue.1 , pp. 67-79
    • Muller, P.1    Erkanli, A.2    West, M.3
  • 32
    • 0348225037 scopus 로고    scopus 로고
    • Maximum likelihood Bayesian averaging of uncertain model predictions
    • DOI 10.1007/s00477-003-0151-7
    • Neuman, S. (2003), Maximum likelihood Bayesian averaging of uncertain model predictions, Stochastic Environ. Res. Risk Assess., 17, 291-305. (Pubitemid 38013163)
    • (2003) Stochastic Environmental Research and Risk Assessment , vol.17 , Issue.5 , pp. 291-305
    • Neuman, S.P.1
  • 33
    • 77957809000 scopus 로고    scopus 로고
    • Iterative solution of nonlinear equations in several variables
    • Philadelphia, Penn.,doi:10.1137/1.9780898719468
    • Ortega, J. M., and W. C. Rheinboldt (2000), Iterative Solution of Nonlinear Equations in Several Variables, Soc. for Indust. and Appl. Math., Philadelphia, Penn., doi:10.1137/1.9780898719468.
    • (2000) Soc. for Indust. and Appl. Math.
    • Ortega, J.M.1    Rheinboldt, W.C.2
  • 34
    • 0141682120 scopus 로고    scopus 로고
    • Improvement of a parsimonious model for streamflow simulation
    • DOI 10.1016/S0022-1694(03)00225-7
    • Perrin, C., C. Michel, and V. Andreassian (2003), Improvement of a parsimonious model for streamflow simulation, J. Hydrol., 279, 275-289, doi:10.1016/S0022-1694(03)00225-7. (Pubitemid 37143319)
    • (2003) Journal of Hydrology , vol.279 , Issue.1-4 , pp. 275-289
    • Perrin, C.1    Michel, C.2    Andreassian, V.3
  • 35
    • 72149112778 scopus 로고    scopus 로고
    • Analyzing input and structural uncertainty of nonlinear dynamic models with stochastic, time-dependent parameters
    • doi:10.1029/2009WR007814
    • Reichert, P., and J. Mieleitner (2009), Analyzing input and structural uncertainty of nonlinear dynamic models with stochastic, time-dependent parameters, Water Resour. Res., 45, W10402, doi:10.1029/2009WR007814.
    • (2009) Water Resour. Res. , vol.45
    • Reichert, P.1    Mieleitner, J.2
  • 36
    • 77950177246 scopus 로고    scopus 로고
    • Understanding predictive uncertainty in hydrological modeling: The challenge of identifying input and structural errors
    • doi:10.1029/2009WR008328
    • Renard, B., D. Kavetski, G. Kuczera, M. Thyer, and S. Franks (2010), Understanding predictive uncertainty in hydrological modeling: The challenge of identifying input and structural errors, Water Resour. Res., 46, W05521, doi:10.1029/2009WR008328.
    • (2010) Water Resour. Res. , vol.46
    • Renard, B.1    Kavetski, D.2    Kuczera, G.3    Thyer, M.4    Franks, S.5
  • 39
    • 0019227508 scopus 로고
    • Stochastic parameter estimation procedures for hydrologic rainfall-runoff models: Correlated and heteroscedastic error cases
    • doi:10.1029/WR016i002p00430
    • Sorooshian, S., and J. A. Dracup (1980), Stochastic parameter estimation procedures for hydrologic rainfall-runoff models: Correlated and heteroscedastic error cases, Water Resour. Res., 16, 430-442, doi:10.1029/ WR016i002p00430.
    • (1980) Water Resour. Res. , vol.16 , pp. 430-442
    • Sorooshian, S.1    Dracup, J.A.2
  • 40
    • 0021084897 scopus 로고
    • Evaluation of maximum likelihood parameter estimation techniques for conceptual rainfall-runoff models: influence of calibration data variability and length on model credibility
    • Sorooshian, S., V. K. Gupta, and J. L. Fulton (1983), Evaluation of maximum likelihood parameter estimation techniques for conceptual rainfallrunoff models: Influence of calibration data variability and length on model credibility, Water Resour. Res., 19, 251-259, doi:10.1029/ WR019i001p00251. (Pubitemid 14256109)
    • (1983) Water Resources Research , vol.19 , Issue.1 , pp. 251-259
    • Sorooshian, S.1    Gupta, V.K.2    Fulton, J.L.3
  • 41
    • 0004020258 scopus 로고
    • Tools for statistical inference
    • edited by J. Berger et al. Springer, New York
    • Tanner, M. (1991), Tools for Statistical Inference, Lect. Notes Stat., vol. 67, edited by J. Berger et al., Springer, New York.
    • (1991) Lect. Notes Stat. , vol.67
    • Tanner, M.1
  • 42
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation
    • doi:10.2307/2289457
    • Tanner, M., and W. Wong (1987), The calculation of posterior distributions by data augmentation, J. Am. Stat. Assoc., 82(392), 528-540, doi:10.2307/2289457.
    • (1987) J. Am. Stat. Assoc. , vol.82 , Issue.392 , pp. 528-540
    • Tanner, M.1    Wong, W.2
  • 43
    • 0034794967 scopus 로고    scopus 로고
    • Bayesian recursive parameter estimation for hydrologic models
    • DOI 10.1029/2000WR900405
    • Thiemann, M., M. Trosset, H. Gupta, and S. Sorooshian (2001), Recursive Bayesian inference for hydrologic models, Water Resour. Res., 37, 2521-2535, doi:10.1029/2000WR900405. (Pubitemid 32908202)
    • (2001) Water Resources Research , vol.37 , Issue.10 , pp. 2521-2535
    • Thiemann, M.1    Trosset, M.2    Gupta, H.3    Sorooshian, S.4
  • 44
    • 57049099445 scopus 로고    scopus 로고
    • Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation
    • doi:10.1029/2007WR006720, [printed 45(122009]
    • Vrugt, J., C. ter Braak, M. Clark, J. Hyman, and B. Robinson (2008), Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation, Water Resour. Res., 44, W00B09, doi:10.1029/2007WR006720, [printed 45(12), 2009].
    • (2008) Water Resour. Res. , vol.44
    • Vrugt, J.1    Ter Braak, C.2    Clark, M.3    Hyman, J.4    Robinson, B.5
  • 47
    • 34248634615 scopus 로고    scopus 로고
    • A Bayesian tutorial for data assimilation
    • DOI 10.1016/j.physd.2006.09.017, PII S016727890600354X, Data Assimilation
    • Wikle, C., and L. Berliner (2007), A Bayesian tutorial for data assimilation, Physica D, 230, 1-16, doi:10.1016/j.physd.2006.09.017. (Pubitemid 46776909)
    • (2007) Physica D: Nonlinear Phenomena , vol.230 , Issue.1-2 , pp. 1-16
    • Wikle, C.K.1    Berliner, L.M.2
  • 49
    • 2942755992 scopus 로고    scopus 로고
    • Nonlocal and localized analyses of conditional mean transient flow in bounded, randomly heterogeneous porous media
    • doi:10.1029/2003WR002099
    • Ye, M., S. P. Neuman, A. Guadagnini, and D. M. Tartakovsky (2004), Nonlocal and localized analyses of conditional mean transient flow in bounded, randomly heterogeneous porous media, Water Resour. Res., 40, W05104, doi:10.1029/2003WR002099.
    • (2004) Water Resour. Res. , vol.40
    • Ye, M.1    Neuman, S.P.2    Guadagnini, A.3    Tartakovsky, D.M.4
  • 50
    • 0001891299 scopus 로고    scopus 로고
    • Data-based mechanistic modelling and validation of rainfall-flow processes
    • edited by M. G. Anderson and P. G. Bates,John Wiley, Chichester, U. K
    • Young, P. C. (2001), Data-based mechanistic modelling and validation of rainfall-flow processes, in Model Validation, edited by M. G. Anderson and P. G. Bates, pp. 117-161, John Wiley, Chichester, U. K.
    • (2001) Model Validation , pp. 117-161
    • Young, P.C.1
  • 51
    • 0028667417 scopus 로고
    • Data-based mechanistic modelling and the rainfall-flow non-linearity
    • Young, P. C., and K. J. Beven (1994), Data-based mechanistic modelling and the rainfall-flow nonlinearity, Environmetrics, 5, 335-363, doi:10.1002/env.3170050311. (Pubitemid 290128)
    • (1994) Environmetrics , vol.5 , Issue.3 , pp. 335-363
    • Young, P.C.1    Bevan, K.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.