메뉴 건너뛰기




Volumn 44, Issue 9, 2011, Pages 2197-2209

An efficient hyperellipsoidal clustering algorithm for resource-constrained environments

Author keywords

Data clustering; HyCARCE; Hyperellipsoidal clustering; Low computational cost clustering algorithm; Wireless sensor networks

Indexed keywords

AUTOMATED ANALYSIS; COMPLEX DATASETS; COMPUTATIONAL CAPABILITY; DATA CLUSTERING; DATA-MINING TOOLS; HYCARCE; HYPERELLIPSOIDAL CLUSTERING; KNOWLEDGE EXTRACTION; LOW COMPUTATIONAL COST CLUSTERING ALGORITHM; REAL LIFE DATASETS; RESOURCE-CONSTRAINED; WIRELESS SENSOR NODE;

EID: 79957441015     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2011.03.007     Document Type: Conference Paper
Times cited : (33)

References (23)
  • 1
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • DOI 10.1109/TNN.2005.845141
    • R. Xu, and D. Wunsch Survey of clustering algorithms IEEE Transactions on Neural Networks 16 3 2005 645 678 (Pubitemid 40718010)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.3 , pp. 645-678
    • Xu, R.1    Wunsch II, D.2
  • 2
    • 34548850872 scopus 로고    scopus 로고
    • A survey on clustering algorithms for wireless sensor networks
    • DOI 10.1016/j.comcom.2007.05.024, PII S0140366407002162
    • A.A. Abbasi, and M. Younis A survey on clustering algorithms for wireless sensor networks Computer Communications 30 2007 2826 2841 (Pubitemid 47445736)
    • (2007) Computer Communications , vol.30 , Issue.14-15 , pp. 2826-2841
    • Abbasi, A.A.1    Younis, M.2
  • 5
    • 0029752880 scopus 로고    scopus 로고
    • A self-organizing network for hyperellipsoidal clustering (HEC)
    • PII S1045922796001804
    • J. Mao, and A.K. Jain A self-organizing network for hyperellipsoidal clustering (HEC) IEEE Transactions on Neural Networks 7 1996 16 29 (Pubitemid 126811725)
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.1 , pp. 16-29
    • Mao, J.1    Jain, A.K.2
  • 6
    • 0033220731 scopus 로고    scopus 로고
    • A competitive elliptical clustering algorithm
    • S.D. Backer, and P. Scheunders A competitive elliptical clustering algorithm Pattern Recognition Letters 20 1113 1999 1141 1147
    • (1999) Pattern Recognition Letters , vol.20 , Issue.1113 , pp. 1141-1147
    • Backer, S.D.1    Scheunders, P.2
  • 7
    • 0036709106 scopus 로고    scopus 로고
    • CLARANS: A method for clustering objects for spatial data mining
    • DOI 10.1109/TKDE.2002.1033770
    • R.T. Ng, and J. Han CLARANS: a method for clustering objects for spatial data mining IEEE Transactions on Knowledge and Data Engineering 14 5 2002 1003 1016 (Pubitemid 35242611)
    • (2002) IEEE Transactions on Knowledge and Data Engineering , vol.14 , Issue.5 , pp. 1003-1016
    • Ng, R.T.1    Han, J.2
  • 9
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • S.L. Chiu Fuzzy model identification based on cluster estimation Journal of Intelligent and Fuzzy Systems 2 1994 267 278
    • (1994) Journal of Intelligent and Fuzzy Systems , vol.2 , pp. 267-278
    • Chiu, S.L.1
  • 10
    • 22044455069 scopus 로고    scopus 로고
    • Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications
    • J. Sander, M. Ester, H.-P. Kriegel, and X. Xu Density-based clustering in spatial databases: the algorithm GDBSCAN and its applications Data Mining and Knowledge Discovery 2 2 1998 169 194
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 169-194
    • Sander, J.1    Ester, M.2    Kriegel, H.-P.3    Xu, X.4
  • 12
    • 38049052212 scopus 로고    scopus 로고
    • DENCLUE 2.0: Fast clustering based on kernel density estimation
    • A. Hinneburg, and H.-H. Gabriel DENCLUE 2.0: fast clustering based on kernel density estimation IDA 2007 70 80
    • (2007) IDA , pp. 70-80
    • Hinneburg, A.1    Gabriel, H.-H.2
  • 14
    • 0036230457 scopus 로고    scopus 로고
    • The new k-windows algorithm for improving the k-means clustering algorithm
    • M.N. Vrahatis, B. Boutsinas, P. Alevizos, and G. Pavlides The new k-windows algorithm for improving the k-means clustering algorithm Journal of Complexity 18 2002 375 391
    • (2002) Journal of Complexity , vol.18 , pp. 375-391
    • Vrahatis, M.N.1    Boutsinas, B.2    Alevizos, P.3    Pavlides, G.4
  • 17
    • 33244462619 scopus 로고    scopus 로고
    • Iterative shrinking method for clustering problems
    • P. Fränti, and O. Virmajoki Iterative shrinking method for clustering problems Pattern Recognition 39 5 2006 761 775 doi: http://dx.doi.org/10.1016/j.patcog.2005.09.012
    • (2006) Pattern Recognition , vol.39 , Issue.5 , pp. 761-775
    • Fränti, P.1    Virmajoki, O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.