-
2
-
-
47549085019
-
Modelling of particulate processes
-
Kraft M 2005 Modelling of particulate processes KONA 23 18-35
-
(2005)
KONA
, vol.23
, pp. 18-35
-
-
Kraft, M.1
-
3
-
-
0034340686
-
Cluster coagulation
-
Norris J R 2000 Cluster coagulation Commun. Math. Phys. 209 407-35
-
(2000)
Commun. Math. Phys.
, vol.209
, pp. 407-435
-
-
Norris, J.R.1
-
6
-
-
0001796185
-
Deterministic and stochastic models for coalescence (aggregation and coagulation): A review of the mean-field theory for probabilists
-
Aldous D 1999 Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists Bernoulli 5 3-48
-
(1999)
Bernoulli
, vol.5
, pp. 3-48
-
-
Aldous, D.1
-
7
-
-
0041511747
-
Scaling theory and exactly solved models in the kinetics of irreversible aggregation
-
DOI 10.1016/S0370-1573(03)00241-2, PII S0370157303002412
-
Leyvraz F 2003 Scaling theory and exactly solved models in the kinetics of irreversible aggregation Phys. Rep. 383 95-212 (Pubitemid 37007093)
-
(2003)
Physics Reports
, vol.383
, Issue.2-3
, pp. 95-212
-
-
Leyvraz, F.1
-
8
-
-
0033440601
-
Smoluchowski's coagulation equation: Uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent
-
Norris J R 1999 Smoluchowski's coagulation equation: uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent Ann. Appl. Probab. 9 78-109
-
(1999)
Ann. Appl. Probab.
, vol.9
, pp. 78-109
-
-
Norris, J.R.1
-
9
-
-
33645882227
-
Well-posedness of Smoluchowski's coagulation equation for a class of homogeneous kernels
-
Fournier N and Laurençot Ph 2006 Well-posedness of Smoluchowski's coagulation equation for a class of homogeneous kernels J. Funct. Anal. 233 351-79
-
(2006)
J. Funct. Anal.
, vol.233
, pp. 351-379
-
-
Fournier, N.L.1
-
11
-
-
0030150082
-
Existence, uniqueness and mass conservation for the coagulation- fragmentation equation
-
Dubovskii P B and Stewart I W 1996 Existence, uniqueness and mass conservation for the coagulation - fragmentation equation Math. Methods Appl. Sci. 19 571-91 (Pubitemid 126568369)
-
(1996)
Mathematical Methods in the Applied Sciences
, vol.19
, Issue.7
, pp. 571-591
-
-
Dubovskii, P.B.1
Stewart, I.W.2
-
12
-
-
0040054556
-
Instantaneous gelation in the generalized Smoluchovski coagulation equation
-
Jiang Yu 1996 Instantaneous gelation in the generalized Smoluchovski coagulation equation J. Phys. A: Math. Gen. 29 7893
-
(1996)
J. Phys. A: Math. Gen.
, vol.29
, pp. 7893
-
-
Yu, J.1
-
13
-
-
0032474307
-
Existence of gelling solutions for coagulation-fragmentation equations
-
Jeon I 1998 Existence of gelling solutions for coagulation-fragmentation equations Commun. Math. Phys. 194 541-67 (Pubitemid 128360080)
-
(1998)
Communications in Mathematical Physics
, vol.194
, Issue.3
, pp. 541-567
-
-
Jeon, I.1
-
14
-
-
0344981529
-
Gelation and mass conservation in coagulation-fragmentation models
-
Escobedo M, Laurençot Ph, Mischler S and Perthame B 2003 Gelation and mass conservation in coagulation-fragmentation models J. Differ. Equ. 195 143-74
-
(2003)
J. Differ. Equ.
, vol.195
, pp. 143-174
-
-
Escobedo, M.L.1
-
15
-
-
35748972646
-
Gelation time in the discrete coagulation - Fragmentation equations with a bilinear coagulation kernel
-
Brunel E, Owens R G and van Roessel H J 2007 Gelation time in the discrete coagulation - fragmentation equations with a bilinear coagulation kernel J. Phys. A: Math. Theor. 40 11749
-
(2007)
J. Phys. A: Math. Theor.
, vol.40
, pp. 11749
-
-
Brunel, E.1
Owens, R.G.2
Van Roessel, H.J.3
-
16
-
-
38949195956
-
Exact post-critical behavior of a source-enhanced gelling system
-
Lushnikov A A 2008 Exact post-critical behavior of a source-enhanced gelling system J. Phys. A: Math. Theor. 41 072001
-
(2008)
J. Phys. A: Math. Theor.
, vol.41
, pp. 072001
-
-
Lushnikov, A.A.1
-
17
-
-
79956336312
-
Stationary and Self-similar Solutions for Coagulation and Fragmentation Equations
-
Elliptic and Parabolic Problems - A Special Tribute to the Work of Haim Brezis
-
Escobedo M 2005 Stationary and self-similar solutions for coagulation and fragmentation equations Elliptic and Parabolic Problems (Progress in Nonlinear Differential Equations and Their Applications vol 63) (Basel: Birkhäuser) pp 243-58 (Pubitemid 41069986)
-
(2005)
PROGRESS IN NONLINEAR DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS
, vol.63
, pp. 243-258
-
-
Escobedo, M.1
-
18
-
-
33749452238
-
Self-similar solutions to a coagulation equation with multiplicative kernel
-
Laurençot Ph 2006 Self-similar solutions to a coagulation equation with multiplicative kernel Physica D 222 80-7
-
(2006)
Physica
, vol.222
, pp. 80-87
-
-
Laurençot, Ph.1
-
20
-
-
78649681785
-
Nonuniversal self-similarity in a coagulation - Annihilation model with constant kernels
-
Laurençot Ph and van Roessel H 2010 Nonuniversal self-similarity in a coagulation - annihilation model with constant kernels J. Phys. A: Math. Theor. 43 455210
-
(2010)
J. Phys. A: Math. Theor.
, vol.43
, pp. 455210
-
-
Van Roessel H, L.1
-
23
-
-
0035497815
-
Stochastic particle approximations for Smoluchoski's coagulation equation
-
DOI 10.1214/aoap/1015345398
-
Eibeck A and Wagner W 2001 Stochastic particle approximations for Smoluchoski's coagulation equation Ann. Appl. Probab. 11 1137-65 (Pubitemid 33571757)
-
(2001)
Annals of Applied Probability
, vol.11
, Issue.4
, pp. 1137-1165
-
-
Eibeck, A.1
Wagner, W.2
-
24
-
-
77958489567
-
Stochastic weighted particle method, theory and numerical examples
-
Rjasanow S and Wagner W 2007 Stochastic weighted particle method, theory and numerical examples Bull. Inst. Math. Acad. Sin. (N.S.) 2 461-93
-
(2007)
Bull. Inst. Math. Acad. Sin. (N.S.)
, vol.2
, pp. 461-493
-
-
Rjasanow, S.1
Wagner, W.2
-
25
-
-
0035976870
-
A survey of numerical solutions to the coagulation equation
-
Man H L 2001 A survey of numerical solutions to the coagulation equation J. Phys. A: Math. Gen. 34 10219
-
(2001)
J. Phys. A: Math. Gen.
, vol.34
, pp. 10219
-
-
Man, H.L.1
-
26
-
-
34547430069
-
Modelling and validation of granulation with heterogeneous binder dispersion and chemical reaction
-
DOI 10.1016/j.ces.2007.05.028, PII S0009250907004241
-
Braumann A, Goodson M, Kraft M and Mort P 2007 Modelling and validation of granulation with heterogeneous binder dispersion and chemical reaction Chem. Eng. Sci. 62 4717-28 (Pubitemid 47176537)
-
(2007)
Chemical Engineering Science
, vol.62
, Issue.17
, pp. 4717-4728
-
-
Braumann, A.1
Goodson, M.J.2
Kraft, M.3
Mort, P.R.4
-
29
-
-
10644263563
-
Single-particle method for stochastic simulation of coagulation processes
-
DOI 10.1016/j.ces.2004.09.062, PII S0009250904007250
-
Kraft M and Vikhansky A 2005 Single-particle method for stochastic simulation of coagulation processes Chem. Eng. Sci. 60 963-7 (Pubitemid 39648968)
-
(2005)
Chemical Engineering Science
, vol.60
, Issue.4
, pp. 963-967
-
-
Vikhansky, A.1
Kraft, M.2
-
30
-
-
77950835710
-
Coupling algorithm for calculating sensitivities in Smoluchowski equation
-
Bailleul I, Kraft M, Man P and Norris J 2010 Coupling algorithm for calculating sensitivities in Smoluchowski equation SIAM J. Sci. Comput. 32 635-55
-
(2010)
SIAM J. Sci. Comput.
, vol.32
, pp. 635-655
-
-
Bailleul, I.1
Kraft, M.2
Man, P.3
Norris, J.4
-
31
-
-
77956020760
-
A stochastic algorithm for sensitivity in Smoluchowski equation
-
Bailleul I, Man P and Kraft M 2010 A stochastic algorithm for sensitivity in Smoluchowski equation SIAM J. Numer. Anal. 48 1064-86
-
(2010)
SIAM J. Numer. Anal.
, vol.48
, pp. 1064-1086
-
-
Bailleul, I.1
Man, P.2
Kraft, M.3
-
32
-
-
84946656793
-
Stochastic coalescence
-
Marcus Allan H 1968 Stochastic coalescence Technometrics 10 133-43
-
(1968)
Technometrics
, vol.10
, pp. 133-143
-
-
Marcus Allan, H.1
-
33
-
-
70350400869
-
The central limit theorem for the Smolukovski coagulation model
-
Kolokoltsov V N 2010 The central limit theorem for the Smolukovski coagulation model Prob. Theory Relat. Fields 146
-
(2010)
Prob. Theory Relat. Fields
, vol.146
-
-
Kolokoltsov, V.N.1
-
34
-
-
70350414333
-
On the regularity of solutions to the spatially homogeneous Boltzmann equation with polynomially growing collision kernel
-
Kolokoltsov V 2006 On the regularity of solutions to the spatially homogeneous Boltzmann equation with polynomially growing collision kernel Adv. Stud. Contemp. Math. (Kyungshang) 12 9-38
-
(2006)
Adv. Stud. Contemp. Math. (Kyungshang)
, vol.12
, pp. 9-38
-
-
Kolokoltsov, V.1
-
36
-
-
33847328954
-
Kinetic equations for the pure jump models of k-nary interacting particle systems
-
Kolokoltsov V N 2006 Kinetic equations for the pure jump models of k-nary interacting particle systems Markov Process. Relat. Fields 12 95-138
-
(2006)
Markov Process. Relat. Fields
, vol.12
, pp. 95-138
-
-
Kolokoltsov, V.N.1
|