메뉴 건너뛰기




Volumn 217, Issue 21, 2011, Pages 8856-8859

Limit cycles and singular point quantities for a 3D Lotka-Volterra system

Author keywords

3D Lotka Volterra system; Center manifold; Hopf bifurcation; Singular point quantities

Indexed keywords

BIFURCATION EQUATIONS; CENTER MANIFOLD; CYCLICITY; LIMIT CYCLE; LOTKA-VOLTERRA SYSTEMS; MATHEMATICA; OPERATION SYSTEM; RECURSION FORMULAS; SINGULAR POINT QUANTITY;

EID: 79956137848     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2011.03.113     Document Type: Article
Times cited : (18)

References (9)
  • 1
    • 0027796995 scopus 로고
    • Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems
    • M.L. Zeeman Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems Dyn. Stab. Syst. 8 1993 189 217
    • (1993) Dyn. Stab. Syst. , vol.8 , pp. 189-217
    • Zeeman, M.L.1
  • 2
    • 43949156327 scopus 로고
    • Multiple limit cycles for three dimensional Lotka-Volterra equations
    • J. Hofbauer, and J.W.-H. So Multiple limit cycles for three dimensional Lotka-Volterra equations Appl. Math. Lett. 7 1994 65 70
    • (1994) Appl. Math. Lett. , vol.7 , pp. 65-70
    • Hofbauer, J.1    So, J.W.-H.2
  • 3
    • 0036630612 scopus 로고    scopus 로고
    • Two limit cycles in three-dimensional Lotka-Volterra systems
    • DOI 10.1016/S0898-1221(02)00129-3, PII S0898122102001293
    • Z. Lu, and Y. Luo Two limit cycles in three-dimensional Lotka-Volterra systems Comput. Math. Appl. 44 2002 51 66 (Pubitemid 35009007)
    • (2002) Computers and Mathematics with Applications , vol.44 , Issue.1-2 , pp. 51-66
    • Lu, Z.1    Luo, Y.2
  • 4
    • 0141639679 scopus 로고    scopus 로고
    • Three limit cycles for a three-dimensional Lotka-Volterra competitive system with a heteroclinic cycle
    • Z. Lu, and Y. Luo Three limit cycles for a three-dimensional Lotka-Volterra competitive system with a heteroclinic cycle Comput. Math. Appl. 46 2003 231 238
    • (2003) Comput. Math. Appl. , vol.46 , pp. 231-238
    • Lu, Z.1    Luo, Y.2
  • 5
    • 27644506636 scopus 로고    scopus 로고
    • A 3D competitive Lotka-Volterra system with three limit cycles: A falsification of a conjecture by Hofbauer and so
    • DOI 10.1016/j.aml.2005.01.002, PII S0893965905001564
    • M. Gyllenberg, P. Yan, and Y. Wang A 3D competitive Lotka-Volterra system with three limit cycles: a falsification of a conjecture by Hofbauer and So Appl. Math. Lett. 19 2006 1 7 (Pubitemid 41563987)
    • (2006) Applied Mathematics Letters , vol.19 , Issue.1 , pp. 1-7
    • Gyllenberg, M.1    Yan, P.2    Wang, Y.3
  • 6
    • 67649742957 scopus 로고    scopus 로고
    • Four limit cycles for a 3D competitive Lotka-Volterra system with a heteroclinic cycle
    • M. Gyllenberg, and P. Yan Four limit cycles for a 3D competitive Lotka-Volterra system with a heteroclinic cycle Comput. Math. Appl. 58 2009 649 669
    • (2009) Comput. Math. Appl. , vol.58 , pp. 649-669
    • Gyllenberg, M.1    Yan, P.2
  • 7
    • 0002380465 scopus 로고    scopus 로고
    • Limit cycles for the competitive three-dimensional Lotka-Volterra system
    • D. Xiao, and W. Li Limit cycles for the competitive three-dimensional Lotka-Volterra system J. Differ. Equat. 164 2000 1 15
    • (2000) J. Differ. Equat. , vol.164 , pp. 1-15
    • Xiao, D.1    Li, W.2
  • 8
    • 77956652314 scopus 로고    scopus 로고
    • Hopf bifurcation for a class of three-dimensional nonlinear dynamic systems
    • Q. Wang, Y. Liu, and H. Chen Hopf bifurcation for a class of three-dimensional nonlinear dynamic systems Bull. Sci. Math. 134 2010 786 798
    • (2010) Bull. Sci. Math. , vol.134 , pp. 786-798
    • Wang, Q.1    Liu, Y.2    Chen, H.3
  • 9
    • 0035274332 scopus 로고    scopus 로고
    • Theory of center-focus for a class of higher-degree critical points and infinite points
    • Y. Liu Theory of center-focus for a class of higher-degree critical points and infinite points Sci. China (Ser. A) 44 2001 37 48
    • (2001) Sci. China (Ser. A) , vol.44 , pp. 37-48
    • Liu, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.