-
1
-
-
0031143265
-
Effective thermal conductivity of particulate composites with interfacial thermal resistance.
-
Nan CW, Birringer R, Clarke DR. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 1997;81(10):6692-6699.
-
(1997)
J Appl Phys
, vol.81
, Issue.10
, pp. 6692-6699
-
-
Nan, C.W.1
Birringer, R.2
Clarke, D.R.3
-
2
-
-
70349607220
-
A benchmark study on the thermal conductivity of nanofluids.
-
Buongiorno J, Venerus DC, Prabhat N. A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 2009;106:094312.
-
(2009)
J Appl Phys
, vol.106
, pp. 094312
-
-
Buongiorno, J.1
Venerus, D.C.2
Prabhat, N.3
-
3
-
-
57149136576
-
A review on nanofluids-Part I: Theoretical and numerical investigations.
-
Wang X, Mujumdar AS. A review on nanofluids-Part I: Theoretical and numerical investigations. Brazilian J Chem Eng 2008;25:613-630.
-
(2008)
Brazilian J Chem Eng
, vol.25
, pp. 613-630
-
-
Wang, X.1
Mujumdar, A.S.2
-
4
-
-
50549103866
-
Thermophysical and electrokinetic properties of nanofluids-A critical review.
-
Murshed SMS, Leong KC, Yang C. Thermophysical and electrokinetic properties of nanofluids-A critical review. Appl Therm Eng 2008;28:2109-2125.
-
(2008)
Appl Therm Eng
, vol.28
, pp. 2109-2125
-
-
Murshed, S.M.S.1
Leong, K.C.2
Yang, C.3
-
6
-
-
0242582398
-
Thermal conductivity of heterogeneous two-component systems.
-
Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fund 1962;1:187-191.
-
(1962)
Ind Eng Chem Fund
, vol.1
, pp. 187-191
-
-
Hamilton, R.L.1
Crosser, O.K.2
-
7
-
-
0037394035
-
Aggregation structure and thermal conductivity of nanofluids.
-
Xuan Y, Li Q, Hu W. Aggregation structure and thermal conductivity of nanofluids. AICHE J 2003;49:1038-1043.
-
(2003)
AICHE J
, vol.49
, pp. 1038-1043
-
-
Xuan, Y.1
Li, Q.2
Hu, W.3
-
8
-
-
33749449267
-
A new model for heat conduction of nanofluids based on fractal distributions of nanoparticles.
-
Xu J, Yu B, Zou M. A new model for heat conduction of nanofluids based on fractal distributions of nanoparticles. J Phys D Appl Phys 2006;39:4486-4490.
-
(2006)
J Phys D Appl Phys
, vol.39
, pp. 4486-4490
-
-
Xu, J.1
Yu, B.2
Zou, M.3
-
9
-
-
8344262372
-
Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions.
-
Wen D, Ding Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Intl J Heat Mass Transf 2004;47:5181-5188.
-
(2004)
Intl J Heat Mass Transf
, vol.47
, pp. 5181-5188
-
-
Wen, D.1
Ding, Y.2
-
10
-
-
29444436413
-
Formulation of nanofluids for natural convective heat transfer applications.
-
Wen D, Ding Y. Formulation of nanofluids for natural convective heat transfer applications. Intl J Heat Fluid Flow 2005;26:855-864.
-
(2005)
Intl J Heat Fluid Flow
, vol.26
, pp. 855-864
-
-
Wen, D.1
Ding, Y.2
-
11
-
-
0007644403
-
Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (Dispersion of γ -Al2O3, SiO2, and TiO2 ultra-fine particles).
-
Masuda H, Ebata A, Teramae K. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (Dispersion of γ -Al2O3, SiO2, and TiO2 ultra-fine particles). Netsu Bussei 1993.4:227-233.
-
(1993)
Netsu Bussei
, vol.4
, pp. 227-233
-
-
Masuda, H.1
Ebata, A.2
Teramae, K.3
-
12
-
-
0036537378
-
Thermal conductivity enhancement of suspensions containing nanosized alumina particles.
-
Xie H, Wang J, Xi T. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys 2002;91:4568-4572.
-
(2002)
J Appl Phys
, vol.91
, pp. 4568-4572
-
-
Xie, H.1
Wang, J.2
Xi, T.3
-
13
-
-
0030711234
-
Enhanced thermal conductivity through the development of nanofluids.
-
Proceedings of the 1996 MRS Fall Symposium, Anonymous Materials Research Society, December 2-5, Boston, MA, USA
-
Eastman JA, Choi US, Li S. Enhanced thermal conductivity through the development of nanofluids. Proceedings of the 1996 MRS Fall Symposium, Anonymous Materials Research Society, (Volume 457 pp. 3-11) December 2-5, Boston, MA, USA. 1997.
-
(1997)
, vol.457
, pp. 3-11
-
-
Eastman, J.A.1
Choi, U.S.2
Li, S.3
-
14
-
-
0042418742
-
Temperature dependence of thermal conductivity enhancement for nanofluids.
-
Das SK, Putra N, Thiesen P. Temperature dependence of thermal conductivity enhancement for nanofluids. Trans ASME, J Heat Transf 2003;125:567-574.
-
(2003)
Trans ASME, J Heat Transf
, vol.125
, pp. 567-574
-
-
Das, S.K.1
Putra, N.2
Thiesen, P.3
-
15
-
-
0033339009
-
Thermal conductivity of nanoparticle-fluid mixture.
-
Wang X, Xu X, Choi SUS. Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transf 1999;13:474-480.
-
(1999)
J Thermophys Heat Transf
, vol.13
, pp. 474-480
-
-
Wang, X.1
Xu, X.2
Choi, S.U.S.3
-
16
-
-
0001435905
-
Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles.
-
Eastman JA, Choi SUS, Li S. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 2001;78:718-720.
-
(2001)
Appl Phys Lett
, vol.78
, pp. 718-720
-
-
Eastman, J.A.1
Choi, S.U.S.2
Li, S.3
-
17
-
-
0032825295
-
Measuring thermal conductivity of fluids containing oxide nanoparticles.
-
Lee S, Choi SUS, Li S. Measuring thermal conductivity of fluids containing oxide nanoparticles. Trans ASME, J Heat Transf 1999;121:280-289.
-
(1999)
Trans ASME, J Heat Transf
, vol.121
, pp. 280-289
-
-
Lee, S.1
Choi, S.U.S.2
Li, S.3
-
18
-
-
33646150179
-
Thermal conductivity and lubrication characteristics of nanofluids.
-
Hwang Y, Park HS, Lee JK. Thermal conductivity and lubrication characteristics of nanofluids. Current Appl Phys 2006;6:e67-e71.
-
(2006)
Current Appl Phys
, vol.6
-
-
Hwang, Y.1
Park, H.S.2
Lee, J.K.3
-
19
-
-
30944440044
-
Enhancement of thermal conductivity with CuO for nanofluids.
-
Liu M, Lin MC, Huang IT, Wang CC. Enhancement of thermal conductivity with CuO for nanofluids. Chem Eng Technol 2006;29:72-77.
-
(2006)
Chem Eng Technol
, vol.29
, pp. 72-77
-
-
Liu, M.1
Lin, M.C.2
Huang, I.T.3
Wang, C.C.4
-
20
-
-
33745815300
-
Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids.
-
Prasher R, Bhattacharya P, Phelan PE. Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids. J Heat Transf 2006;128:588-595.
-
(2006)
J Heat Transf
, vol.128
, pp. 588-595
-
-
Prasher, R.1
Bhattacharya, P.2
Phelan, P.E.3
-
22
-
-
34447630661
-
Effects of various parameters on nanofluid thermal conductivity.
-
Jang SP, Choi SUS. Effects of various parameters on nanofluid thermal conductivity. Trans ASME, J Heat Transf 2007;129:617-623.
-
(2007)
Trans ASME, J Heat Transf
, vol.129
, pp. 617-623
-
-
Jang, S.P.1
Choi, S.U.S.2
-
23
-
-
16244411133
-
A new thermal conductivity model for nanofluids.
-
Koo J, Kleinstreuer C. A new thermal conductivity model for nanofluids. J Nanoparticle Res 2004;6:577-588.
-
(2004)
J Nanoparticle Res
, vol.6
, pp. 577-588
-
-
Koo, J.1
Kleinstreuer, C.2
-
24
-
-
43349105098
-
Effect of Brownian motion on thermal conductivity of nanofluids.
-
art. no. 042406.
-
Shukla RK, Dhir VK. Effect of Brownian motion on thermal conductivity of nanofluids. J Heat Transf 2008;130: art. no. 042406.
-
(2008)
J Heat Transf
, vol.130
-
-
Shukla, R.K.1
Dhir, V.K.2
-
26
-
-
0026222667
-
Fluid to particle heat transfer in a fluidized bed and to single particles.
-
Brodkey RS, Kim DS, Sidner W. Fluid to particle heat transfer in a fluidized bed and to single particles. Int J Heat Mass Transf 1991;34:2327-2337.
-
(1991)
Int J Heat Mass Transf
, vol.34
, pp. 2327-2337
-
-
Brodkey, R.S.1
Kim, D.S.2
Sidner, W.3
-
27
-
-
2942664700
-
On the forces acting on a circular cylinder set obliquely in a uniform stream at low values of Reynolds number.
-
Tomotika S, Aoi T, Yosinobu H. On the forces acting on a circular cylinder set obliquely in a uniform stream at low values of Reynolds number. Proc Roy Soc London, Anonymous 1953;219:233-244.
-
(1953)
Proc Roy Soc London, Anonymous
, vol.219
, pp. 233-244
-
-
Tomotika, S.1
Aoi, T.2
Yosinobu, H.3
-
29
-
-
0000080147
-
Fractal growth processes.
-
Leonard MS. Fractal growth processes. Nature 1986;322:789-793.
-
(1986)
Nature
, vol.322
, pp. 789-793
-
-
Leonard, M.S.1
-
30
-
-
0009439115
-
Theoretical and numerical study of fractal dimensionality in self-avoiding walks.
-
Havlin S, Ben-Avraham D. Theoretical and numerical study of fractal dimensionality in self-avoiding walks. Physical Rev A 1982;26:1728-1734.
-
(1982)
Physical Rev A
, vol.26
, pp. 1728-1734
-
-
Havlin, S.1
Ben-Avraham, D.2
-
31
-
-
0009822033
-
Aggregation and structure formation in chaotic and regular flows.
-
Danielson TJ, Muzzio FJ, Ottino JM. Aggregation and structure formation in chaotic and regular flows. Phys Rev Lett 1991;66:3128-3131.
-
(1991)
Phys Rev Lett
, vol.66
, pp. 3128-3131
-
-
Danielson, T.J.1
Muzzio, F.J.2
Ottino, J.M.3
-
32
-
-
0030008524
-
Aggregation and cluster size evolution in nonhomogeneous flows.
-
Hansen S, Ottino JM. Aggregation and cluster size evolution in nonhomogeneous flows. J Colloid Interface Sci 1996;179:89-103.
-
(1996)
J Colloid Interface Sci
, vol.179
, pp. 89-103
-
-
Hansen, S.1
Ottino, J.M.2
-
33
-
-
31144453694
-
Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles.
-
Hong KS, Hong TK, Yang HS. Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles. Appl Phys Lett 2006;88:1-3.
-
(2006)
Appl Phys Lett
, vol.88
, pp. 1-3
-
-
Hong, K.S.1
Hong, T.K.2
Yang, H.S.3
|