메뉴 건너뛰기




Volumn 40, Issue 4, 2011, Pages 352-368

A new model for nanofluid conductivity based on the effects of clustering due to Brownian motion

Author keywords

Cluster size; Conductivity; Fractal theory; Micro convection; Nanofluids

Indexed keywords

CLUSTER SIZES; CONDUCTIVITY; FRACTAL THEORY; MICRO-CONVECTION; NANOFLUIDS;

EID: 79956134347     PISSN: 10992871     EISSN: 15231496     Source Type: Journal    
DOI: 10.1002/htj.20350     Document Type: Article
Times cited : (5)

References (33)
  • 1
    • 0031143265 scopus 로고    scopus 로고
    • Effective thermal conductivity of particulate composites with interfacial thermal resistance.
    • Nan CW, Birringer R, Clarke DR. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 1997;81(10):6692-6699.
    • (1997) J Appl Phys , vol.81 , Issue.10 , pp. 6692-6699
    • Nan, C.W.1    Birringer, R.2    Clarke, D.R.3
  • 2
    • 70349607220 scopus 로고    scopus 로고
    • A benchmark study on the thermal conductivity of nanofluids.
    • Buongiorno J, Venerus DC, Prabhat N. A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 2009;106:094312.
    • (2009) J Appl Phys , vol.106 , pp. 094312
    • Buongiorno, J.1    Venerus, D.C.2    Prabhat, N.3
  • 3
    • 57149136576 scopus 로고    scopus 로고
    • A review on nanofluids-Part I: Theoretical and numerical investigations.
    • Wang X, Mujumdar AS. A review on nanofluids-Part I: Theoretical and numerical investigations. Brazilian J Chem Eng 2008;25:613-630.
    • (2008) Brazilian J Chem Eng , vol.25 , pp. 613-630
    • Wang, X.1    Mujumdar, A.S.2
  • 4
    • 50549103866 scopus 로고    scopus 로고
    • Thermophysical and electrokinetic properties of nanofluids-A critical review.
    • Murshed SMS, Leong KC, Yang C. Thermophysical and electrokinetic properties of nanofluids-A critical review. Appl Therm Eng 2008;28:2109-2125.
    • (2008) Appl Therm Eng , vol.28 , pp. 2109-2125
    • Murshed, S.M.S.1    Leong, K.C.2    Yang, C.3
  • 6
    • 0242582398 scopus 로고
    • Thermal conductivity of heterogeneous two-component systems.
    • Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fund 1962;1:187-191.
    • (1962) Ind Eng Chem Fund , vol.1 , pp. 187-191
    • Hamilton, R.L.1    Crosser, O.K.2
  • 7
    • 0037394035 scopus 로고    scopus 로고
    • Aggregation structure and thermal conductivity of nanofluids.
    • Xuan Y, Li Q, Hu W. Aggregation structure and thermal conductivity of nanofluids. AICHE J 2003;49:1038-1043.
    • (2003) AICHE J , vol.49 , pp. 1038-1043
    • Xuan, Y.1    Li, Q.2    Hu, W.3
  • 8
    • 33749449267 scopus 로고    scopus 로고
    • A new model for heat conduction of nanofluids based on fractal distributions of nanoparticles.
    • Xu J, Yu B, Zou M. A new model for heat conduction of nanofluids based on fractal distributions of nanoparticles. J Phys D Appl Phys 2006;39:4486-4490.
    • (2006) J Phys D Appl Phys , vol.39 , pp. 4486-4490
    • Xu, J.1    Yu, B.2    Zou, M.3
  • 9
    • 8344262372 scopus 로고    scopus 로고
    • Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions.
    • Wen D, Ding Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Intl J Heat Mass Transf 2004;47:5181-5188.
    • (2004) Intl J Heat Mass Transf , vol.47 , pp. 5181-5188
    • Wen, D.1    Ding, Y.2
  • 10
    • 29444436413 scopus 로고    scopus 로고
    • Formulation of nanofluids for natural convective heat transfer applications.
    • Wen D, Ding Y. Formulation of nanofluids for natural convective heat transfer applications. Intl J Heat Fluid Flow 2005;26:855-864.
    • (2005) Intl J Heat Fluid Flow , vol.26 , pp. 855-864
    • Wen, D.1    Ding, Y.2
  • 11
    • 0007644403 scopus 로고
    • Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (Dispersion of γ -Al2O3, SiO2, and TiO2 ultra-fine particles).
    • Masuda H, Ebata A, Teramae K. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (Dispersion of γ -Al2O3, SiO2, and TiO2 ultra-fine particles). Netsu Bussei 1993.4:227-233.
    • (1993) Netsu Bussei , vol.4 , pp. 227-233
    • Masuda, H.1    Ebata, A.2    Teramae, K.3
  • 12
    • 0036537378 scopus 로고    scopus 로고
    • Thermal conductivity enhancement of suspensions containing nanosized alumina particles.
    • Xie H, Wang J, Xi T. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys 2002;91:4568-4572.
    • (2002) J Appl Phys , vol.91 , pp. 4568-4572
    • Xie, H.1    Wang, J.2    Xi, T.3
  • 13
    • 0030711234 scopus 로고    scopus 로고
    • Enhanced thermal conductivity through the development of nanofluids.
    • Proceedings of the 1996 MRS Fall Symposium, Anonymous Materials Research Society, December 2-5, Boston, MA, USA
    • Eastman JA, Choi US, Li S. Enhanced thermal conductivity through the development of nanofluids. Proceedings of the 1996 MRS Fall Symposium, Anonymous Materials Research Society, (Volume 457 pp. 3-11) December 2-5, Boston, MA, USA. 1997.
    • (1997) , vol.457 , pp. 3-11
    • Eastman, J.A.1    Choi, U.S.2    Li, S.3
  • 14
    • 0042418742 scopus 로고    scopus 로고
    • Temperature dependence of thermal conductivity enhancement for nanofluids.
    • Das SK, Putra N, Thiesen P. Temperature dependence of thermal conductivity enhancement for nanofluids. Trans ASME, J Heat Transf 2003;125:567-574.
    • (2003) Trans ASME, J Heat Transf , vol.125 , pp. 567-574
    • Das, S.K.1    Putra, N.2    Thiesen, P.3
  • 15
    • 0033339009 scopus 로고    scopus 로고
    • Thermal conductivity of nanoparticle-fluid mixture.
    • Wang X, Xu X, Choi SUS. Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transf 1999;13:474-480.
    • (1999) J Thermophys Heat Transf , vol.13 , pp. 474-480
    • Wang, X.1    Xu, X.2    Choi, S.U.S.3
  • 16
    • 0001435905 scopus 로고    scopus 로고
    • Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles.
    • Eastman JA, Choi SUS, Li S. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 2001;78:718-720.
    • (2001) Appl Phys Lett , vol.78 , pp. 718-720
    • Eastman, J.A.1    Choi, S.U.S.2    Li, S.3
  • 17
    • 0032825295 scopus 로고    scopus 로고
    • Measuring thermal conductivity of fluids containing oxide nanoparticles.
    • Lee S, Choi SUS, Li S. Measuring thermal conductivity of fluids containing oxide nanoparticles. Trans ASME, J Heat Transf 1999;121:280-289.
    • (1999) Trans ASME, J Heat Transf , vol.121 , pp. 280-289
    • Lee, S.1    Choi, S.U.S.2    Li, S.3
  • 18
    • 33646150179 scopus 로고    scopus 로고
    • Thermal conductivity and lubrication characteristics of nanofluids.
    • Hwang Y, Park HS, Lee JK. Thermal conductivity and lubrication characteristics of nanofluids. Current Appl Phys 2006;6:e67-e71.
    • (2006) Current Appl Phys , vol.6
    • Hwang, Y.1    Park, H.S.2    Lee, J.K.3
  • 19
    • 30944440044 scopus 로고    scopus 로고
    • Enhancement of thermal conductivity with CuO for nanofluids.
    • Liu M, Lin MC, Huang IT, Wang CC. Enhancement of thermal conductivity with CuO for nanofluids. Chem Eng Technol 2006;29:72-77.
    • (2006) Chem Eng Technol , vol.29 , pp. 72-77
    • Liu, M.1    Lin, M.C.2    Huang, I.T.3    Wang, C.C.4
  • 20
    • 33745815300 scopus 로고    scopus 로고
    • Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids.
    • Prasher R, Bhattacharya P, Phelan PE. Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids. J Heat Transf 2006;128:588-595.
    • (2006) J Heat Transf , vol.128 , pp. 588-595
    • Prasher, R.1    Bhattacharya, P.2    Phelan, P.E.3
  • 22
    • 34447630661 scopus 로고    scopus 로고
    • Effects of various parameters on nanofluid thermal conductivity.
    • Jang SP, Choi SUS. Effects of various parameters on nanofluid thermal conductivity. Trans ASME, J Heat Transf 2007;129:617-623.
    • (2007) Trans ASME, J Heat Transf , vol.129 , pp. 617-623
    • Jang, S.P.1    Choi, S.U.S.2
  • 23
    • 16244411133 scopus 로고    scopus 로고
    • A new thermal conductivity model for nanofluids.
    • Koo J, Kleinstreuer C. A new thermal conductivity model for nanofluids. J Nanoparticle Res 2004;6:577-588.
    • (2004) J Nanoparticle Res , vol.6 , pp. 577-588
    • Koo, J.1    Kleinstreuer, C.2
  • 24
    • 43349105098 scopus 로고    scopus 로고
    • Effect of Brownian motion on thermal conductivity of nanofluids.
    • art. no. 042406.
    • Shukla RK, Dhir VK. Effect of Brownian motion on thermal conductivity of nanofluids. J Heat Transf 2008;130: art. no. 042406.
    • (2008) J Heat Transf , vol.130
    • Shukla, R.K.1    Dhir, V.K.2
  • 26
    • 0026222667 scopus 로고
    • Fluid to particle heat transfer in a fluidized bed and to single particles.
    • Brodkey RS, Kim DS, Sidner W. Fluid to particle heat transfer in a fluidized bed and to single particles. Int J Heat Mass Transf 1991;34:2327-2337.
    • (1991) Int J Heat Mass Transf , vol.34 , pp. 2327-2337
    • Brodkey, R.S.1    Kim, D.S.2    Sidner, W.3
  • 27
    • 2942664700 scopus 로고
    • On the forces acting on a circular cylinder set obliquely in a uniform stream at low values of Reynolds number.
    • Tomotika S, Aoi T, Yosinobu H. On the forces acting on a circular cylinder set obliquely in a uniform stream at low values of Reynolds number. Proc Roy Soc London, Anonymous 1953;219:233-244.
    • (1953) Proc Roy Soc London, Anonymous , vol.219 , pp. 233-244
    • Tomotika, S.1    Aoi, T.2    Yosinobu, H.3
  • 29
    • 0000080147 scopus 로고
    • Fractal growth processes.
    • Leonard MS. Fractal growth processes. Nature 1986;322:789-793.
    • (1986) Nature , vol.322 , pp. 789-793
    • Leonard, M.S.1
  • 30
    • 0009439115 scopus 로고
    • Theoretical and numerical study of fractal dimensionality in self-avoiding walks.
    • Havlin S, Ben-Avraham D. Theoretical and numerical study of fractal dimensionality in self-avoiding walks. Physical Rev A 1982;26:1728-1734.
    • (1982) Physical Rev A , vol.26 , pp. 1728-1734
    • Havlin, S.1    Ben-Avraham, D.2
  • 31
    • 0009822033 scopus 로고
    • Aggregation and structure formation in chaotic and regular flows.
    • Danielson TJ, Muzzio FJ, Ottino JM. Aggregation and structure formation in chaotic and regular flows. Phys Rev Lett 1991;66:3128-3131.
    • (1991) Phys Rev Lett , vol.66 , pp. 3128-3131
    • Danielson, T.J.1    Muzzio, F.J.2    Ottino, J.M.3
  • 32
    • 0030008524 scopus 로고    scopus 로고
    • Aggregation and cluster size evolution in nonhomogeneous flows.
    • Hansen S, Ottino JM. Aggregation and cluster size evolution in nonhomogeneous flows. J Colloid Interface Sci 1996;179:89-103.
    • (1996) J Colloid Interface Sci , vol.179 , pp. 89-103
    • Hansen, S.1    Ottino, J.M.2
  • 33
    • 31144453694 scopus 로고    scopus 로고
    • Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles.
    • Hong KS, Hong TK, Yang HS. Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles. Appl Phys Lett 2006;88:1-3.
    • (2006) Appl Phys Lett , vol.88 , pp. 1-3
    • Hong, K.S.1    Hong, T.K.2    Yang, H.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.