-
1
-
-
0001858928
-
On the second eigenvalue of the p-Laplacian
-
A. Anane and N. Tsouli, quot;On the second eigenvalue of the p-Laplacian,quot; in: Nonlinear Partial Differential Equations (F́es, 1994), Pitman Research Notes in Mathematics Series 343 (1996), pp. 1-9.
-
(1996)
Nonlinear Partial Differential Equations (F́ess 1994), Pitman Research Notes in Mathematics Series
, vol.343
, pp. 1-9
-
-
Anane, A.1
Tsouli, N.2
-
2
-
-
38549181235
-
Asymptotic behavior of nonlinear eigenvalue problems involving p-Laplacian type operators
-
T. Champion and L. De Pascale, quot;Asymptotic behavior of nonlinear eigenvalue problems involving p-Laplacian type operators,quot; Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 1179-1195.
-
(2007)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.137
, pp. 1179-1195
-
-
Champion, T.1
De Pascale, L.2
-
3
-
-
84946996421
-
Existence and nonuniqueness for the p-Laplacian: Nonlinear eigenvalues
-
J. P. Garcia Azorero and I. Peral, quot;Existence and nonuniqueness for the p-Laplacian: nonlinear eigenvalues,quot; Comm. Partial Differential Equations 12 (1987), 1389-1430.
-
(1987)
Comm. Partial Differential Equations
, vol.12
, pp. 1389-1430
-
-
Garcia Azorero, J.P.1
Peral, I.2
-
4
-
-
21944446696
-
On the eigenvalues of the p-laplacian with varying P
-
Y. X. Huang, quot;On the eigenvalues of the p-Laplacian with varying p,quot; Proc. Amer. Math. Soc. 125 (1997), 3347-3354. (Pubitemid 127744043)
-
(1997)
Proceedings of the American Mathematical Society
, vol.125
, Issue.11
, pp. 3347-3354
-
-
Huang, Y.X.I.1
-
7
-
-
85068234417
-
Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant
-
B. Kawohl and V. Fridman, quot;Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant,quot; Comment. Math. Univ. Carolin. 44 (2003), 659-667.
-
(2003)
Comment. Math. Univ. Carolin.
, vol.44
, pp. 659-667
-
-
Kawohl, B.1
Fridman, V.2
-
8
-
-
29144466663
-
Variational eigenvalues of degenerate eigenvalue problems for the weighted p-laplacian
-
A. Lê and K. Schmitt, quot;Variational eigenvalues of degenerate eigenvalue problems for the weighted p-Laplacian,quot; Adv. Nonlinear Stud. 5 (2005), 573-585. (Pubitemid 41795442)
-
(2005)
Advanced Nonlinear Studies
, vol.5
, Issue.4
, pp. 573-585
-
-
Le, A.1
Schmitt, K.2
-
9
-
-
79956159988
-
The second eigenvalue of the p-Laplacian as p goes to 1
-
Article ID 984671
-
E. Parini, quot;The second eigenvalue of the p-Laplacian as p goes to 1,quot; Int. J. Differ. Equ. (2010), Article ID 984671.
-
(2010)
Int. J. Differ. Equ.
-
-
Parini, E.1
|