메뉴 건너뛰기




Volumn 33, Issue 3, 2011, Pages 215-233

A neural network scheme for long-term forecasting of chaotic time series

Author keywords

Chaotic time series; ECG modeling; Hybrid connected Complex Neural Network; Long term prediction; Mackey Glass equation; Recurrent neural networks

Indexed keywords

CHAOTIC TIME SERIES; COMPLEX NEURAL NETWORKS; ECG MODELING; LONG-TERM PREDICTION; MACKEY-GLASS EQUATION;

EID: 79956086978     PISSN: 13704621     EISSN: 1573773X     Source Type: Journal    
DOI: 10.1007/s11063-011-9174-0     Document Type: Article
Times cited : (24)

References (46)
  • 2
    • 0035306096 scopus 로고    scopus 로고
    • Multi-step learning rule for recurrent neural models: An application to time series forecasting
    • DOI 10.1023/A:1011324221407
    • IM Galván P Isasi 2001 Multi-step learning rule for recurrent neural models: an application to time series forecasting Neural Process Lett 13 115 133 1008.68725 10.1023/A:1011324221407 (Pubitemid 32432825)
    • (2001) Neural Processing Letters , vol.13 , Issue.2 , pp. 115-133
    • Galvan, I.M.1    Isasi, P.2
  • 3
    • 33645994476 scopus 로고    scopus 로고
    • Characterizing chaos through Lyapunov metrics
    • 10.1109/TSMCC.2006.871132
    • W Kinsner 2006 Characterizing chaos through Lyapunov metrics IEEE Trans Syst Man Cybernet C 36 2 141 151 10.1109/TSMCC.2006.871132
    • (2006) IEEE Trans Syst Man Cybernet C , vol.36 , Issue.2 , pp. 141-151
    • Kinsner, W.1
  • 5
    • 0004767539 scopus 로고
    • Dynamic modeling of chaotic time series with neural networks
    • G. Tesauro D.S. Touretzky T.K. Leen (eds). Morgan Koufmann San Mateo
    • Principe JC, Kuo JM (1995) Dynamic modeling of chaotic time series with neural networks. In: Tesauro G, Touretzky DS, Leen TK (eds) Advances in neural information processing systems 7. Morgan Koufmann, San Mateo
    • (1995) Advances in Neural Information Processing Systems 7
    • Principe, J.C.1    Kuo, J.M.2
  • 7
    • 0037262264 scopus 로고    scopus 로고
    • An early prediction of maximum sunspot number in solar cycle 24
    • 10.1023/A:1023260916825
    • S Duhau 2003 An early prediction of maximum sunspot number in solar cycle 24 Solar Phys 213 203 212 10.1023/A:1023260916825
    • (2003) Solar Phys , vol.213 , pp. 203-212
    • Duhau, S.1
  • 8
    • 56549090156 scopus 로고    scopus 로고
    • Long-term time series prediction with the NARX network: An empirical evaluation
    • 10.1016/j.neucom.2008.01.030
    • MP-J Júnior GA Barreto 2008 Long-term time series prediction with the NARX network: an empirical evaluation Neurocomputing 71 16-18 3335 3343 10.1016/j.neucom.2008.01.030
    • (2008) Neurocomputing , vol.71 , Issue.1618 , pp. 3335-3343
    • Júnior, M.1    Barreto, G.A.2
  • 9
    • 79956156971 scopus 로고    scopus 로고
    • Challenges in modeling nonlinear systems: A worked example
    • Mees AI (ed) Birkhauser, Boston
    • Abarbanel, Henry DI (2000) Challenges in modeling nonlinear systems: a worked example. In: Mees AI (ed) Nonlinear dynamics and statistics. Birkhauser, Boston
    • (2000) Nonlinear Dynamics and Statistics
    • Abarbanel, H.1
  • 10
    • 0346057260 scopus 로고    scopus 로고
    • Towards long-term prediction
    • 1732304 0981.37037 10.1016/S0167-2789(99)00152-9
    • K Judd M Small 2000 Towards long-term prediction Physica D 136 31 44 1732304 0981.37037 10.1016/S0167-2789(99)00152-9
    • (2000) Physica D , vol.136 , pp. 31-44
    • Judd, K.1    Small, M.2
  • 11
    • 29144504391 scopus 로고    scopus 로고
    • Preface: Some thoughts on the future of Forecasting
    • DOI 10.1111/j.1468-0084.2005.00138.x
    • CJW Granger 2005 Preface: somethoughts on the future of forecasting Oxford Bull Econ Stat 67 supplement(0305-9049) 707 711 10.1111/j.1468-0084.2005. 00138.x (Pubitemid 41812908)
    • (2005) Oxford Bulletin of Economics and Statistics , vol.67 , Issue.SUPPL. , pp. 707-711
    • Granger, C.W.J.1
  • 13
    • 34249673496 scopus 로고    scopus 로고
    • Time series prediction using chaotic neural networks on the CATS benchmark
    • DOI 10.1016/j.neucom.2006.09.013, PII S092523120700046X, Selected papers from the 3rd International Conference on Development and Learning (ICDL 2004)
    • I Beliaev R Kozma 2007 Time series prediction using chaotic neural networks on the CATS benchmark Neurocomputing 70 2246 2439 10.1016/j.neucom. 2006.09.013 (Pubitemid 46825390)
    • (2007) Neurocomputing , vol.70 , Issue.13-15 , pp. 2426-2439
    • Beliaev, I.1    Kozma, R.2
  • 15
    • 0022011031 scopus 로고
    • Input-output parametric models for nonlinear systems-part I: Deterministic nonlinear systems
    • J Leontaritis SA Billings 1985 Input-output parametric models for nonlinear systems-part I: deterministic nonlinear systems Int J Control 41 2 303 328 783150 0569.93011 10.1080/0020718508961129 (Pubitemid 15476363)
    • (1985) International Journal of Control , vol.41 , Issue.2 , pp. 303-328
    • Leontaritis, I.J.1    Billings, S.A.2
  • 17
    • 26444565569 scopus 로고
    • Finding structure in time
    • 10.1207/s15516709cog1402-1
    • JL Elman 1990 Finding structure in time Cogn Sci 14 179 211 10.1207/s15516709cog1402-1
    • (1990) Cogn Sci , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 20
    • 33646007938 scopus 로고    scopus 로고
    • Multiresolution FIR neural-network-based learning algorithm applied to network traffic prediction
    • 10.1109/TSMCC.2004.843217 10.1109/TSMCC.2004.843217
    • V Alarcon-Aquino JA Barria 2006 Multiresolution FIR neural-network-based learning algorithm applied to network traffic prediction IEEE Trans Syst Man Cybernet C 36 2 208 220 10.1109/TSMCC.2004.843217 10.1109/TSMCC.2004.843217
    • (2006) IEEE Trans Syst Man Cybernet C , vol.36 , Issue.2 , pp. 208-220
    • Alarcon-Aquino, V.1    Barria, J.A.2
  • 21
    • 66449136989 scopus 로고    scopus 로고
    • Time series prediction using support vector machines: A survey
    • 10.1109/MCI.2009.932254
    • NI Sapankevych R Sankar 2009 Time series prediction using support vector machines: a survey IEEE Comput Intell Mag 4 2 24 38 10.1109/MCI.2009.932254
    • (2009) IEEE Comput Intell Mag , vol.4 , Issue.2 , pp. 24-38
    • Sapankevych, N.I.1    Sankar, R.2
  • 22
    • 79956107347 scopus 로고    scopus 로고
    • The effect of non-linear dynamic invariant in the recurrent neural networks for prediction of electrocardiograms
    • Texas Tech University, Lubbock, TX, USA
    • Gomez-Gil P (1998) The effect of non-linear dynamic invariant in the recurrent neural networks for prediction of electrocardiograms. Dissertation in Computer Science, Texas Tech University, Lubbock, TX, USA
    • (1998) Dissertation in Computer Science
    • Gomez-Gil, P.1
  • 23
    • 0025503558 scopus 로고
    • Backpropagation through time: What it does and how to do it
    • 10.1109/5.58337
    • P Werbos 1990 Backpropagation through time: what it does and how to do it Proc IEEE 74 19 1550 1560 10.1109/5.58337
    • (1990) Proc IEEE , vol.74 , Issue.19 , pp. 1550-1560
    • Werbos, P.1
  • 24
    • 0003464265 scopus 로고
    • Dynamic recurrent neural networks
    • School of Computer Science, Carnegie Mellon University, Pittsburgh, MA
    • Pearlmutter B (1990) Dynamic recurrent neural networks. Technical Report CMU-CS-90-196. School of Computer Science, Carnegie Mellon University, Pittsburgh, MA
    • (1990) Technical Report CMU-CS-90-196
    • Pearlmutter, B.1
  • 26
    • 35949012282 scopus 로고
    • Prediction in chaotic nonlinear systems: Methods for time series with broad band Fourier spectra
    • 1041513 10.1103/PhysRevA.41.1782
    • HDI Abarbanel R Brown J Kadtke 1990 Prediction in chaotic nonlinear systems: methods for time series with broad band Fourier spectra Phys Rev A 41 1782 1807 1041513 10.1103/PhysRevA.41.1782
    • (1990) Phys Rev A , vol.41 , pp. 1782-1807
    • Abarbanel, H.D.I.1    Brown, R.2    Kadtke, J.3
  • 28
    • 0000547548 scopus 로고
    • An algorithm for the n Lyapunov exponents of an n-dimensional unknown dynamical system
    • 1192059 0761.58025 10.1016/0167-2789(92)90210-E
    • R Gencay WD Dechert 1992 An algorithm for the n Lyapunov exponents of an n-dimensional unknown dynamical system Physica D 59 142 157 1192059 0761.58025 10.1016/0167-2789(92)90210-E
    • (1992) Physica D , vol.59 , pp. 142-157
    • Gencay, R.1    Dechert, W.D.2
  • 29
    • 0008494528 scopus 로고
    • Determining Lyapunov exponents from a time series
    • 805706 0585.58037 10.1016/0167-2789(85)90011-9
    • A Wolf JB Swift HL Swinney JA Vastano 1985 Determining Lyapunov exponents from a time series Physica D 16 285 317 805706 0585.58037 10.1016/0167-2789(85) 90011-9
    • (1985) Physica D , vol.16 , pp. 285-317
    • Wolf, A.1    Swift, J.B.2    Swinney, H.L.3    Vastano, J.A.4
  • 30
    • 0001394076 scopus 로고
    • Measurement of the Lyapunov spectrum from a chaotic time series
    • 800046 10.1103/PhysRevLett.55.1082
    • J Sano Y Swada 1985 Measurement of the Lyapunov spectrum from a chaotic time series Phys Rev Lett 55 1082 1085 800046 10.1103/PhysRevLett.55.1082
    • (1985) Phys Rev Lett , vol.55 , pp. 1082-1085
    • Sano, J.1    Swada, Y.2
  • 31
    • 43949166788 scopus 로고
    • A practical method for calculating largest Lyapunov exponents for small data set
    • 1221250 10.1016/0167-2789(93)90009-P
    • M Rosestein J Collins C Deluca 1993 A practical method for calculating largest Lyapunov exponents for small data set Physica D 65 117 134 1221250 10.1016/0167-2789(93)90009-P
    • (1993) Physica D , vol.65 , pp. 117-134
    • Rosestein, M.1    Collins, J.2    Deluca, C.3
  • 32
    • 0000610143 scopus 로고    scopus 로고
    • Robust estimation of tangent maps and Liapunov spectra
    • AG Darbyshire DS Broomhead 1996 Robust estimation of tangent maps and Lyapunov spectra Physica D 89 287 305 1369237 0886.58091 10.1016/0167-2789(95) 00246-4 (Pubitemid 126687255)
    • (1996) Physica D: Nonlinear Phenomena , vol.89 , Issue.3-4 , pp. 287-305
    • Darbyshire, A.G.1    Broomhead, D.S.2
  • 33
    • 0033325268 scopus 로고    scopus 로고
    • On the use of hybrid neural networks and non linear invariants for prediction of electrocardiograms
    • IEEE doi:10.1109/IJCNN.1999.836264
    • Gómez-Gil P, Oldham WB (1999) On the use of hybrid neural networks and non linear invariants for prediction of electrocardiograms. In: Proceedings of IJCNN 99, IEEE, pp 3661-3664. doi: 10.1109/IJCNN.1999.836264
    • (1999) Proceedings of IJCNN 99 , pp. 3661-3664
    • Gómez-Gil, P.1    Oldham, W.B.2
  • 36
    • 56349134057 scopus 로고    scopus 로고
    • Efficient online learning with spiral recurrent neural networks
    • IEEE doi:10.1109/IJCNN.2008.4634155
    • Sollacher R, Gao H (2008) Efficient online learning with spiral recurrent neural networks. In: IJCNN (2008), IEEE, pp 2551-2558. doi: 10.1109/IJCNN.2008.4634155
    • (2008) IJCNN (2008) , pp. 2551-2558
    • Sollacher, R.1    Gao, H.2
  • 40
    • 57349180665 scopus 로고    scopus 로고
    • Search of the best method to predict acute coronary syndrome using only the electrocardiogram from the emergency department
    • 10.1016/j.jelectrocard.2008.07.010
    • JL Forberg M Green J Bjork M Ohlsson L Edenbrandt H Ohlin U Ekelund 2009 Search of the best method to predict acute coronary syndrome using only the electrocardiogram from the emergency department J Electrocardiol 42 1 58 63 10.1016/j.jelectrocard.2008.07.010
    • (2009) J Electrocardiol , vol.42 , Issue.1 , pp. 58-63
    • Forberg, J.L.1    Green, M.2    Bjork, J.3    Ohlsson, M.4    Edenbrandt, L.5    Ohlin, H.6    Ekelund, U.7
  • 41
    • 79956090090 scopus 로고    scopus 로고
    • Designing an artificial neural network model for the prediction of thrombo-embolic stroke
    • D Shanthi G Sahoo N Saravanan 2009 Designing an artificial neural network model for the prediction of thrombo-embolic stroke Int J Biom Bioinformatics 3 1 10 18
    • (2009) Int J Biom Bioinformatics , vol.3 , Issue.1 , pp. 10-18
    • Shanthi, D.1    Sahoo, G.2    Saravanan, N.3
  • 42
    • 45849088051 scopus 로고    scopus 로고
    • Ventricular arrhythmias and changes in heart rate preceding ventricular tachycardia in patients with an implantable cardioverter defibrillator
    • 10.1007/s11517-008-0326-y 10.1007/s11517-008-0326-y
    • C Lerma N Wassel A Schirdewan J Kurths L Glass 2008 Ventricular arrhythmias and changes in heart rate preceding ventricular tachycardia in patients with an implantable cardioverter defibrillator Med Biol Eng Comput 46 715 727 10.1007/s11517-008-0326-y 10.1007/s11517-008-0326-y
    • (2008) Med Biol Eng Comput , vol.46 , pp. 715-727
    • Lerma, C.1    Wassel, N.2    Schirdewan, A.3    Kurths, J.4    Glass, L.5
  • 44
    • 0004254071 scopus 로고
    • Harvard-MIT Division of Health Sciences Technology. 2 Biomedical Engineering Center Cambridge, MA
    • Harvard-MIT Division of Health Sciences Technology: (1992) The MIT-BIH Arrhythmia Database CD-ROM, 2nd edn. Biomedical Engineering Center, Cambridge, MA
    • (1992) The MIT-BIH Arrhythmia Database CD-ROM
  • 45
  • 46
    • 0001823409 scopus 로고    scopus 로고
    • Disentangling uncertainly and error: On the predictability of nonlinear systems
    • A.I. Mees (eds). Birkhäuser Boston
    • Smith LA (2000) Disentangling uncertainly and error: on the predictability of nonlinear systems. In: Mees AI (eds) Nonlinear dynamics and statics. Birkhäuser, Boston
    • (2000) Nonlinear Dynamics and Statics
    • Smith, L.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.