메뉴 건너뛰기




Volumn 35, Issue 4, 2011, Pages 320-332

An adaptive spatial clustering algorithm based on delaunay triangulation

Author keywords

Adaptive; Delaunay triangulation; Spatial clustering; Spatial data mining

Indexed keywords

ADAPTIVE; COMPLICATED SHAPE; DATA SETS; DELAUNAY TRIANGULATION; NON-HOMOGENEOUS; PRIOR KNOWLEDGE; SPATIAL CLUSTER; SPATIAL CLUSTERING; SPATIAL DATA MINING; SPATIAL DATABASE; SPATIAL PROXIMITY; SPECIAL APPLICATIONS; STATISTICAL FEATURES;

EID: 79956040188     PISSN: 01989715     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compenvurbsys.2011.02.003     Document Type: Article
Times cited : (115)

References (35)
  • 2
    • 0347172110 scopus 로고    scopus 로고
    • OPTICS: Ordering points to identify the clustering structure
    • In Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data Philadelphia, USA.
    • Ankerst, M., Breunig, M. M., Kriegel, H.-P., Sander, J. (1999). OPTICS: Ordering points to identify the clustering structure. In Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data (pp. 49-60). Philadelphia, USA.
    • (1999) , pp. 49-60
    • Ankerst, M.1    Breunig, M.M.2    Kriegel, H.-P.3    Sander, J.4
  • 4
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with Noise
    • In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland, OR.
    • Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with Noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (pp. 226-231). Portland, OR.
    • (1996) , pp. 226-231
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 5
    • 0036606522 scopus 로고    scopus 로고
    • Multi-level clustering and its visualization for exploratory spatial analysis
    • Estivill-Castro V., Lee I. Multi-level clustering and its visualization for exploratory spatial analysis. GeoInformatica 2002, 6:123-152.
    • (2002) GeoInformatica , vol.6 , pp. 123-152
    • Estivill-Castro, V.1    Lee, I.2
  • 7
    • 0032091595 scopus 로고    scopus 로고
    • CURE: An efficient clustering algorithm for large database
    • In Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. USA, New York.
    • Guha, S., Rastogi, R., Shim, K. (1998). CURE: An efficient clustering algorithm for large database. In Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data (pp. 73-84). USA, New York.
    • (1998) , pp. 73-84
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 9
    • 85140527321 scopus 로고    scopus 로고
    • An efficient approach to clustering in large multimedia databases with noise
    • In Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining USA, New York.
    • Hinneburg, A., Keim, D. A. (1998). An efficient approach to clustering in large multimedia databases with noise. In Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining (pp. 58-65). USA, New York.
    • (1998) , pp. 58-65
    • Hinneburg, A.1    Keim, D.A.2
  • 11
    • 0032686723 scopus 로고    scopus 로고
    • Chameleon: Hierarchical clustering using dynamic modeling
    • Karypis G., Han E.H., Kumar V. Chameleon: Hierarchical clustering using dynamic modeling. IEEE Computer 1999, 32:68-75.
    • (1999) IEEE Computer , vol.32 , pp. 68-75
    • Karypis, G.1    Han, E.H.2    Kumar, V.3
  • 14
    • 14644401723 scopus 로고    scopus 로고
    • Combining partitional and hierarchical algorithms for robust and efficient data clustering with cohesion self-merging
    • Lin C.-R., Chen M.-S. Combining partitional and hierarchical algorithms for robust and efficient data clustering with cohesion self-merging. IEEE Transaction on Knowledge and Data Engineering 2005, 17:145-159.
    • (2005) IEEE Transaction on Knowledge and Data Engineering , vol.17 , pp. 145-159
    • Lin, C.-R.1    Chen, M.-S.2
  • 15
    • 43249120533 scopus 로고    scopus 로고
    • Effective clustering and boundary detection algorithm based on Delaunay triangulation
    • Liu D., Nosovskiy G.V., Sourina O. Effective clustering and boundary detection algorithm based on Delaunay triangulation. Pattern Recognition Letters 2008, 29:1261-1273.
    • (2008) Pattern Recognition Letters , vol.29 , pp. 1261-1273
    • Liu, D.1    Nosovskiy, G.V.2    Sourina, O.3
  • 16
    • 53749087377 scopus 로고    scopus 로고
    • Cross-scale analysis of cluster correspondence using different operational neighborhoods
    • Lu Y., Thill J.-C. Cross-scale analysis of cluster correspondence using different operational neighborhoods. Journal of Geographical Systems 2008, 10:241-261.
    • (2008) Journal of Geographical Systems , vol.10 , pp. 241-261
    • Lu, Y.1    Thill, J.-C.2
  • 20
    • 0003136237 scopus 로고
    • Efficient and effective clustering methods for spatial data mining
    • In Proceedings of the 20th International Conference on Very Large Data Bases. Chile, Santiago.
    • Ng, R. T., Han, J. (1994). Efficient and effective clustering methods for spatial data mining. In Proceedings of the 20th International Conference on Very Large Data Bases (pp. 144-155). Chile, Santiago.
    • (1994) , pp. 144-155
    • Ng, R.T.1    Han, J.2
  • 21
    • 44649141789 scopus 로고    scopus 로고
    • Automatic clustering and boundary detection algorithm based on adaptive influence function
    • Nosovskiy G.V., Liu D., Sourina O. Automatic clustering and boundary detection algorithm based on adaptive influence function. Pattern Recognition 2008, 41:2757-2776.
    • (2008) Pattern Recognition , vol.41 , pp. 2757-2776
    • Nosovskiy, G.V.1    Liu, D.2    Sourina, O.3
  • 23
    • 22044455069 scopus 로고    scopus 로고
    • Density-based clustering in spatial database: The algorithm GDBSCAN and it applications
    • Sander J., Ester M., Kriegel H.-P., Xu X. Density-based clustering in spatial database: The algorithm GDBSCAN and it applications. Data Mining and Knowledge Discovery 1998, 2:169-194.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 169-194
    • Sander, J.1    Ester, M.2    Kriegel, H.-P.3    Xu, X.4
  • 24
    • 33748882240 scopus 로고    scopus 로고
    • A clustering method for spatial databases. In Proceedings of the ICCSA 2004 International Conference
    • Italia, Perugia.
    • Schoier, G., Borruso, G. (2004). A clustering method for spatial databases. In Proceedings of the ICCSA 2004 International Conference (pp. 1089-1095). Italia, Perugia.
    • (2004) , pp. 1089-1095
    • Schoier, G.1    Borruso, G.2
  • 25
    • 79960302824 scopus 로고    scopus 로고
    • A modification of the DBSCAN algorithm in a spatial data mining approach. In Meeting of the Classification and Data Analysis Group of the SIS
    • Italia, Macerata.
    • Schoier, G., Borruso, G. (2007). A modification of the DBSCAN algorithm in a spatial data mining approach. In Meeting of the Classification and Data Analysis Group of the SIS (pp. 395-398). Italia, Macerata.
    • (2007) , pp. 395-398
    • Schoier, G.1    Borruso, G.2
  • 26
    • 0003052357 scopus 로고    scopus 로고
    • Wave Cluster: A multi-resolution clustering approach for very large spatial databases. In Proceedings of 24th International Conference on Very Large Databases
    • USA, New York.
    • Sheikholeslami, G., Chatterjee, S., Zhang, A. (1998). Wave Cluster: A multi-resolution clustering approach for very large spatial databases. In Proceedings of 24th International Conference on Very Large Databases (pp. 428-439). USA, New York.
    • (1998) , pp. 428-439
    • Sheikholeslami, G.1    Chatterjee, S.2    Zhang, A.3
  • 27
    • 0027868368 scopus 로고
    • Delaunay Triangulations in TIN creation: An overview and a linear-time algorithm
    • Tsai V.J.D. Delaunay Triangulations in TIN creation: An overview and a linear-time algorithm. International Journal of Geographical Information Systems 1993, 7:501-524.
    • (1993) International Journal of Geographical Information Systems , vol.7 , pp. 501-524
    • Tsai, V.J.D.1
  • 28
    • 37849047432 scopus 로고    scopus 로고
    • ANGEL: A new effective and efficient hybrid clustering technique for large databases
    • Tsai C.-F., Yen C.-F. ANGEL: A new effective and efficient hybrid clustering technique for large databases. Lecture Notes in Computer Science 2007, 4426:817-824.
    • (2007) Lecture Notes in Computer Science , vol.4426 , pp. 817-824
    • Tsai, C.-F.1    Yen, C.-F.2
  • 29
    • 84994158589 scopus 로고    scopus 로고
    • STING: A statistical information grid approach to spatial data mining. In Proceedings of the 1997 International Conference on Very Large Databases
    • Greece, Athens.
    • Wang, W., Yang, J., Muntz, R. (1997). STING: A statistical information grid approach to spatial data mining. In Proceedings of the 1997 International Conference on Very Large Databases (pp. 186-195). Greece, Athens.
    • (1997) , pp. 186-195
    • Wang, W.1    Yang, J.2    Muntz, R.3
  • 30
    • 0031701179 scopus 로고    scopus 로고
    • A distribution-based clustering algorithm for mining in large spatial database. In Proceedings of the 14th International Conference on Data Engineering
    • USA, Washington, DC.
    • Xu, X., Ester, M., Kriegel, H.-P., & Sander, J. (1998). A distribution-based clustering algorithm for mining in large spatial database. In Proceedings of the 14th International Conference on Data Engineering (pp. 324-331). USA, Washington, DC.
    • (1998) , pp. 324-331
    • Xu, X.1    Ester, M.2    Kriegel, H.-P.3    Sander, J.4
  • 31
    • 70349335150 scopus 로고    scopus 로고
    • John Wiley & Sons, New Jersey
    • Xu R., Wunsh D. Clustering 2009, John Wiley & Sons, New Jersey.
    • (2009) Clustering
    • Xu, R.1    Wunsh, D.2
  • 32
    • 34250662644 scopus 로고    scopus 로고
    • Local indicators of network-constrained clusters in spatial point patterns
    • Yamada I., Thill J.-C. Local indicators of network-constrained clusters in spatial point patterns. Geographical Analysis 2007, 39:268-292.
    • (2007) Geographical Analysis , vol.39 , pp. 268-292
    • Yamada, I.1    Thill, J.-C.2
  • 33
    • 0014976008 scopus 로고
    • Graph-theoretical methods for detecting and describing gestalt clusters
    • Zahn C.T. Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Transaction on Computer 1971, 20:68-86.
    • (1971) IEEE Transaction on Computer , vol.20 , pp. 68-86
    • Zahn, C.T.1
  • 34
    • 0030157145 scopus 로고    scopus 로고
    • BIRCH: An efficient data clustering method for very large databases. In Proceedings of the ACM SIGMOD International Conference on Management of Data
    • Canada, Montreal.
    • Zhang, T., Ramakrishnan, R., Livny, M. (1996). BIRCH: An efficient data clustering method for very large databases. In Proceedings of the ACM SIGMOD International Conference on Management of Data (pp. 103-114), Canada, Montreal.
    • (1996) , pp. 103-114
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3
  • 35
    • 70449713359 scopus 로고    scopus 로고
    • A graph-theoretical clustering method based on two rounds of minimum spanning trees
    • Zhong C., Miao D., Wang R. A graph-theoretical clustering method based on two rounds of minimum spanning trees. Pattern Recognition 2010, 43:752-766.
    • (2010) Pattern Recognition , vol.43 , pp. 752-766
    • Zhong, C.1    Miao, D.2    Wang, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.