-
1
-
-
0034610290
-
Protein kinase activity of Tel1p and Mec1p, two Saccharomyces cerevisiae proteins related to the human ATM protein kinase
-
Mallory JC, Petes TD. Protein kinase activity of Tel1p and Mec1p, two Saccharomyces cerevisiae proteins related to the human ATM protein kinase. Proc Natl Acad Sci USA 2000; 97:13749-54.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, pp. 13749-13754
-
-
Mallory, J.C.1
Petes, T.D.2
-
2
-
-
0030593033
-
Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways
-
Sanchez Y, Desany BA, Jones WJ, Liu Q, Wang B, Elledge SJ. Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science 1996; 271:314-5.
-
(1996)
Science
, vol.271
, pp. 314-315
-
-
Sanchez, Y.1
Desany, B.A.2
Jones, W.J.3
Liu, Q.4
Wang, B.5
Elledge, S.J.6
-
3
-
-
0033527787
-
Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms
-
Sanchez Y, Bachant J, Wang H, Hu F, Liu D, Tetzlaff M, et al. Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms. Science 1999; 286:1166-71.
-
(1999)
Science
, vol.286
, pp. 1166-1171
-
-
Sanchez, Y.1
Bachant, J.2
Wang, H.3
Hu, F.4
Liu, D.5
Tetzlaff, M.6
-
4
-
-
0027145127
-
DUNI encodes a protein kinase that controls the DNA damage response in yeast
-
Zhou Z, Elledge SJ. DUNI encodes a protein kinase that controls the DNA damage response in yeast. Cell 1993; 75:1119-27.
-
(1993)
Cell
, vol.75
, pp. 1119-1127
-
-
Zhou, Z.1
Elledge, S.J.2
-
5
-
-
33750990221
-
Phosphorylation of Rad55 on serines 2, 8, and 14 is required for efficient homologous recombination in the recovery of stalled replication forks
-
DOI 10.1128/MCB.01317-06
-
Herzberg K, Bashkirov VI, Rolfsmeier M, Haghnazari E, McDonald WH, Anderson S, et al. Phosphorylation of Rad55 on serines 2, 8 and 14 is required for efficient homologous recombination in the recovery of stalled replication forks. Mol Cell Biol 2006; 26:8396-409. (Pubitemid 44748573)
-
(2006)
Molecular and Cellular Biology
, vol.26
, Issue.22
, pp. 8396-8409
-
-
Herzberg, K.1
Bashkirov, V.I.2
Rolfsmeier, M.3
Haghnazari, E.4
McDonald, W.H.5
Anderson, S.6
Bashkirova, E.V.7
Yates III, J.R.8
Heyer, W.-D.9
-
6
-
-
0032497529
-
A Mec1-and Rad53-dependent checkpoint controls late-firing origins of DNA replication
-
DOI 10.1038/27001
-
Santocanale C, Diffley JF. A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 1998; 395:615-8. (Pubitemid 28475717)
-
(1998)
Nature
, vol.395
, Issue.6702
, pp. 615-618
-
-
Santocanale, C.1
Diffley, J.F.X.2
-
7
-
-
51949118680
-
Checkpoint-dependent phosphorylation of Exo1 modulates the DNA damage response
-
Morin I, Ngo HP, Greenall A, Zubko M, Morrice N, Lydall D. Checkpoint-dependent phosphorylation of Exo1 modulates the DNA damage response. EMBO Journal 2008; 27:2400-10.
-
(2008)
EMBO Journal
, vol.27
, pp. 2400-2410
-
-
Morin, I.1
Ngo, H.P.2
Greenall, A.3
Zubko, M.4
Morrice, N.5
Lydall, D.6
-
8
-
-
0037066720
-
Human exonuclease I is required for 5′ and 3′ mismatch repair
-
DOI 10.1074/jbc.M111854200
-
Genschel J, Bazemore LR, Modrich P. Human exonuclease I is required for 5′ and 3′ mismatch repair. J Biol Chem 2002; 277:13302-11. (Pubitemid 34952702)
-
(2002)
Journal of Biological Chemistry
, vol.277
, Issue.15
, pp. 13302-13311
-
-
Genschel, J.1
Bazemore, L.R.2
Modrich, P.3
-
9
-
-
53649104599
-
Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing
-
Mimitou EP, Symington LS. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 2008; 455:770-4.
-
(2008)
Nature
, vol.455
, pp. 770-774
-
-
Mimitou, E.P.1
Symington, L.S.2
-
10
-
-
0036682516
-
EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants
-
DOI 10.1101/gad.225102
-
Maringele L, Lydall D. EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants. Genes Dev 2002; 16:1919-33. (Pubitemid 34832921)
-
(2002)
Genes and Development
, vol.16
, Issue.15
, pp. 1919-1933
-
-
Maringele, L.1
Lydall, D.2
-
11
-
-
2442520305
-
EXO1 contributes to telomere maintenance in both telomerase-proficient and telomerase-deficient Saccharomyces cerevisiae
-
Bertuch AA, Lundblad V. EXO1 contributes to telomere maintenance in both telomerase-proficient and telomerase-deficient Saccharomyces cerevisiae. Genetics 2004; 166:1651-9.
-
(2004)
Genetics
, vol.166
, pp. 1651-1659
-
-
Bertuch, A.A.1
Lundblad, V.2
-
12
-
-
2442572065
-
Yeast MPH1 Gene Functions in an Error-Free DNA Damage Bypass Pathway That Requires Genes from Homologous Recombination, but Not from Postreplicative Repair
-
DOI 10.1534/genetics.166.4.1673
-
Schurer KA, Rudolph C, Ulrich HD, Kramer W. Yeast MPH1 gene functions in an error-free DNA damage bypass pathway that requires genes from homologous recombination, but not from postreplicative repair. Genetics 2004; 166:1673-86. (Pubitemid 38621051)
-
(2004)
Genetics
, vol.166
, Issue.4
, pp. 1673-1686
-
-
Schurer, K.A.1
Rudolph, C.2
Ulrich, H.D.3
Kramer, W.4
-
13
-
-
0035735472
-
Mrc1 transduces signals of DNA replication stress to activate Rad53
-
DOI 10.1038/ncb1101-958
-
Alcasabas AA, Osborn AJ, Bachant J, Hu F, Werler PJH, Boussett K, et al. Mrc1 transduces signals of DNA replication stress to activiate Rad53. Nat Cell Biol 2001; 3:958-65. (Pubitemid 34428740)
-
(2001)
Nature Cell Biology
, vol.3
, Issue.11
, pp. 958-965
-
-
Alcasabas, A.A.1
Osborn, A.J.2
Bachant, J.3
Hu, F.4
Werler, P.J.H.5
Bousset, K.6
Furuya, K.7
Diffley, J.F.X.8
Carr, A.M.9
Elledge, S.J.10
-
14
-
-
0036281710
-
Rad9 phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint
-
DOI 10.1016/S1097-2765(02)00532-4
-
Schwartz MF, Duong JK, Sun Z, Morrow JS, Pradhan D, Stern DF. Rad9 phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint. Mol Cell 2002; 9:1055-65. (Pubitemid 34626674)
-
(2002)
Molecular Cell
, vol.9
, Issue.5
, pp. 1055-1065
-
-
Schwartz, M.F.1
Duong, J.K.2
Sun, Z.3
Morrow, J.S.4
Pradhan, D.5
Stern, D.F.6
-
15
-
-
0032189952
-
The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage
-
DOI 10.1093/emboj/17.19.5679
-
Vialard JE, Gilbert CS, Green CM, Lowndes NF. The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage. EMBO J 1998; 17:5679-88. (Pubitemid 28445979)
-
(1998)
EMBO Journal
, vol.17
, Issue.19
, pp. 5679-5688
-
-
Vialard, J.E.1
Gilbert, C.S.2
Green, C.M.3
Lowndes, N.F.4
-
16
-
-
0023712476
-
The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae
-
Weinert TA, Hartwell TA. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 1988; 241:317-22.
-
(1988)
Science
, vol.241
, pp. 317-322
-
-
Weinert, T.A.1
Hartwell, T.A.2
-
17
-
-
0032504069
-
Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint
-
DOI 10.1126/science.281.5374.272
-
Sun ZHJ, Fay DS, Stern DF. Rad53 FHA domain associated with phosporylated Rad9 in the DNA damage checkpoint. Science 1998; 281:272-4. (Pubitemid 28334513)
-
(1998)
Science
, vol.281
, Issue.5374
, pp. 272-274
-
-
Sun, Z.1
Hsiao, J.2
Fay, D.S.3
Stern, D.F.4
-
18
-
-
0034881760
-
Budding yeast Rad9 is an ATP-dependent Rad53 activating machine
-
DOI 10.1016/S1097-2765(01)00267-2
-
Gilbert CS, Green CM, Lowndes NF. Budding yeast Rad9 is an ATP-dependent Rad53 activating machine. Mol Cell 2001; 8:129-36. (Pubitemid 32772911)
-
(2001)
Molecular Cell
, vol.8
, Issue.1
, pp. 129-136
-
-
Gilbert, C.S.1
Green, C.M.2
Lowndes, N.F.3
-
19
-
-
0027158083
-
Destruction of the CDC28/CLB mitotic kinase is not required for the metaphase to anaphase transition in budding yeast
-
Surana U, Amon A, Dowzer C, McGrew J, Byers B, Nasmyth K. Destruction of the CDC28/CLB mitotic kinase is not required for the metaphase to anaphase transition in budding yeast. EMBO J 1993; 12:1969-78. (Pubitemid 23157713)
-
(1993)
EMBO Journal
, vol.12
, Issue.5
, pp. 1969-1978
-
-
Surana, U.1
Amon, A.2
Dowzer, C.3
McGrew, J.4
Byers, B.5
Nasmyth, K.6
-
20
-
-
0242413993
-
Two Distinct Pathways for Inhibiting Pds1 Ubiquitination in Response to DNA Damage
-
DOI 10.1074/jbc.M306783200
-
Agarwal RTZ, Yu H, Cohen-Fix O. Two distinct pathways for inhibiting pds1 ubiquitination in response to DNA damage. J Biol Chem 2003; 278:45027-33. (Pubitemid 37377263)
-
(2003)
Journal of Biological Chemistry
, vol.278
, Issue.45
, pp. 45027-45033
-
-
Agarwal, R.1
Tang, Z.2
Yu, H.3
Cohen-Fix, O.4
-
21
-
-
0035797444
-
Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint
-
DOI 10.1038/35087607
-
Tercero JA, Diffley JF. Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 2001; 412:553-7. (Pubitemid 32743835)
-
(2001)
Nature
, vol.412
, Issue.6846
, pp. 553-557
-
-
Tercero, J.A.1
Diffley, J.F.X.2
-
22
-
-
0035797383
-
The DNA replication checkpoint response stabilizes stalled replication forks
-
DOI 10.1038/35087613
-
Lopes M, Cotta-Ramusino C, Pellicioloi A, Liberi G, Plevani P, Muzi-Falconi M, et al. The DNA replication checkpoint response stabilizes stalled replication forks. Nature 2001; 412:557-61. (Pubitemid 32743836)
-
(2001)
Nature
, vol.412
, Issue.6846
, pp. 557-561
-
-
Lopes, M.1
Cotta-Ramusino, C.2
Pellicioli, A.3
Liberi, G.4
Plevani, P.5
Muzi-Falconi, M.6
Newlon, C.S.7
Foiani, M.8
-
23
-
-
1442351990
-
Checkpoint-mediated control of replisome-fork association and signalling in response to replication pausing
-
DOI 10.1038/sj.onc.1207199
-
Lucca C, Vanoli F, Cotta-Ramusino C, Pellicioli A, Liberi G, Haber J, et al. Checkpoint-mediated control of replisome-fork association and signalling in response to replication pausing. Oncogene 2004; 23:1206-13. (Pubitemid 38297174)
-
(2004)
Oncogene
, vol.23
, Issue.6
, pp. 1206-1213
-
-
Lucca, C.1
Vanoli, F.2
Cotta-Ramusino, C.3
Pellicioli, A.4
Liberi, G.5
Haber, J.6
Foiani, M.7
-
24
-
-
0029739245
-
A novel role for the budding yeast RAD9 checkpoint gene in DNA damage-dependent transcription
-
Aboussekhra AVJ, Morrison DE, de la Torre-Ruiz MA, Cernakova L, Fabre F, Lowndes NF. A novel role for the budding yeast RAD9 checkpoint gene in DNA damage-dependent transcription. EMBO J 1996; 15:3912-22. (Pubitemid 26289801)
-
(1996)
EMBO Journal
, vol.15
, Issue.15
, pp. 3912-3922
-
-
Aboussekhra, A.1
Vialard, J.E.2
Morrison, D.E.3
De La, T.-R.M.A.4
Cernakova, L.5
Fabre, F.6
Lowndes, N.F.7
-
25
-
-
33645717628
-
GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks
-
Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, van Deursen F, Edmondson RD, et al. GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol 2006; 8:358-66.
-
(2006)
Nat Cell Biol
, vol.8
, pp. 358-366
-
-
Gambus, A.1
Jones, R.C.2
Sanchez-Diaz, A.3
Kanemaki, M.4
Van Deursen, F.5
Edmondson, R.D.6
-
26
-
-
53149135030
-
Mrc1 and DNA polymerase epsilon function together in linking DNA replication and the S phase checkpoint
-
Lou H, Komata M, Katou Y, Guan Z, Reis CC, Budd M, et al. Mrc1 and DNA polymerase epsilon function together in linking DNA replication and the S phase checkpoint. Mol Cell 2008; 32:106-17.
-
(2008)
Mol Cell
, vol.32
, pp. 106-117
-
-
Lou, H.1
Komata, M.2
Katou, Y.3
Guan, Z.4
Reis, C.C.5
Budd, M.6
-
27
-
-
0042865938
-
S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex
-
DOI 10.1038/nature01900
-
Katou Y, Kanoh Y, Bando M, Noguchi H, Tanaka H, Ashikari T, et al. S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 2003; 424:1078-83. (Pubitemid 37064311)
-
(2003)
Nature
, vol.424
, Issue.6952
, pp. 1078-1083
-
-
Katou, Y.1
Kanoh, Y.2
Bando, M.3
Noguchi, H.4
Tanaka, H.5
Ashikari, T.6
Sugimoto, K.7
Shirahige, K.8
-
28
-
-
24044463869
-
Mrc1 is required for normal progression of replication forks throughout chromatin in S. cerevisiae
-
DOI 10.1016/j.molcel.2005.06.037, PII S1097276505015157
-
Szyjka SJ, Viggiani CJ, Aparicio OM. Mrc1 is required for normal progression of replication forks throughout chromatin in S. cerevisiae. Mol Cell 2005; 19:691-7. (Pubitemid 41219444)
-
(2005)
Molecular Cell
, vol.19
, Issue.5
, pp. 691-697
-
-
Szyjka, S.J.1
Viggiani, C.J.2
Aparicio, O.M.3
-
29
-
-
69149108736
-
Mrc1 phosphorylation in response to DNA replication stress is required for Mec1 accumulation at the stalled fork
-
Naylor MLLJ, Osborn AJ, Elledge SJ. Mrc1 phosphorylation in response to DNA replication stress is required for Mec1 accumulation at the stalled fork. PNAS 2009; 106:12765-70.
-
(2009)
PNAS
, vol.106
, pp. 12765-12770
-
-
Naylor, M.L.L.J.1
Osborn, A.J.2
Elledge, S.J.3
-
30
-
-
0038506000
-
Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53
-
DOI 10.1101/gad.1098303
-
Osborn AJ, Elledge SJ. Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. Genes Dev 2003; 17:1755-67. (Pubitemid 36870338)
-
(2003)
Genes and Development
, vol.17
, Issue.14
, pp. 1755-1767
-
-
Osborn, A.J.1
Elledge, S.J.2
-
31
-
-
0343808271
-
Identification of a new yeast DNA polymerase of the DNA polymerase β family and evidence supporting a role in meiosis
-
Budd ME, Campbell JL. Identification of a new yeast DNA polymerase of the DNA polymerase β family and evidence supporting a role in meiosis. J Biol Chem 1995.
-
(1995)
J Biol Chem
-
-
Budd, M.E.1
Campbell, J.L.2
-
32
-
-
0034596053
-
The nuclease activity of the yeast Dna2 protein, which is related to the RecB-like nucleases, is essential in vivo
-
DOI 10.1074/jbc.M909511199
-
Budd ME, Choe WC, Campbell JL. The nuclease activity of the yeast Dna2 protein, which is related to the RecB-like nucleases, is essential in vivo. J Biol Chem 2000; 275:16518-29. (Pubitemid 30398875)
-
(2000)
Journal of Biological Chemistry
, vol.275
, Issue.22
, pp. 16518-16529
-
-
Budd, M.E.1
Choe, W.-C.2
Campbell, J.L.3
-
33
-
-
0032500542
-
Dna2 of Saccharomyces cerevisiae possesses a single-stranded DNA-specific endonuclease activity that is able to act on double-stranded DNA in the presence of ATP
-
Bae SH, Choi E, Lee K, Park J, Lee S, Seo Y. Dna2 of Saccharomyces cerevisiae possesses a single-stranded DNA-specific endonuclease activity that is able to act on double-stranded DNA in the presence of ATP. J Biol Chem 1998; 273:26880-90.
-
(1998)
J Biol Chem
, vol.273
, pp. 26880-26890
-
-
Bae, S.H.1
Choi, E.2
Lee, K.3
Park, J.4
Lee, S.5
Seo, Y.6
-
34
-
-
0034528196
-
Characterization of the enzymatic properties of the yeast Dna2 helicase/endonuclease suggests a new model for Okazaki fragment processing
-
Bae SH, Seo YS. Characterization of the enzymatic properties of the yeast Dna2 helicase/endonuclease suggests a new model for Okazaki fragment processing. J Biol Chem 2000; 275:38022-31.
-
(2000)
J Biol Chem
, vol.275
, pp. 38022-38031
-
-
Bae, S.H.1
Seo, Y.S.2
-
35
-
-
0028784285
-
DNA2 encodes a DNA helicase essential for replication of eukaryotic chromosomes
-
Budd ME, Choe WC, Campbell JL. DNA2 encodes a DNA helicase essential for replication of eukaryotic chromosomes. J Biol Chem 1995; 270:26766-9.
-
(1995)
J Biol Chem
, vol.270
, pp. 26766-26769
-
-
Budd, M.E.1
Choe, W.C.2
Campbell, J.L.3
-
36
-
-
33846030496
-
Single strand annealing and ATP-independent strand exchange activities of yeast and human DNA2: Possible role in okazaki fragment maturation
-
DOI 10.1074/jbc.M604925200
-
Masuda-Sasa T, Polaczek P, Campbell JL. Single strand annealing and ATP-independent strand exchange activities of yeast and human DNA2: possible role in Okazaki fragment maturation. J Biol Chem 2006; 281:38555-64. (Pubitemid 46041980)
-
(2006)
Journal of Biological Chemistry
, vol.281
, Issue.50
, pp. 38555-38564
-
-
Masuda-Sasa, T.1
Polaczek, P.2
Campbell, J.L.3
-
38
-
-
0029098312
-
A yeast gene required for DNA replication encodes a protein with homology to DNA helicases
-
Budd ME, Campbell JL. A yeast gene required for DNA replication encodes a protein with homology to DNA helicases. Proc Natl Acad Sci USA 1995; 92:7642-6.
-
(1995)
Proc Natl Acad Sci USA
, vol.92
, pp. 7642-7646
-
-
Budd, M.E.1
Campbell, J.L.2
-
39
-
-
0028363546
-
Reconstitution of complete SV40 DNA replication with purified replication factors
-
Waga S, Bauer G, Stillman B. Reconstitution of complete SV40 DNA replication with purified replication factors. J Biol Chem 1994; 269:10923-34. (Pubitemid 24198307)
-
(1994)
Journal of Biological Chemistry
, vol.269
, Issue.14
, pp. 10923-10934
-
-
Waga, S.1
Bauer, G.2
Stillman, B.3
-
40
-
-
0029039868
-
Requirement for the yeast RTH1 5′ to 3′ exonuclease for the stability of simple repetitive DNA
-
Johnson RE, Gopala KK, Prakash L, Prakash S. Requirement for the yeast RTH1 5′ to 3′ exonuclease for the stability of simple repetitive DNA. Science 1995; 269:238-40.
-
(1995)
Science
, vol.269
, pp. 238-240
-
-
Johnson, R.E.1
Gopala, K.K.2
Prakash, L.3
Prakash, S.4
-
41
-
-
0032860479
-
Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants
-
DOI 10.1038/12687
-
Chen C, Kolodner RD. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat Genet 1999; 23:81-5. (Pubitemid 29418793)
-
(1999)
Nature Genetics
, vol.23
, Issue.1
, pp. 81-85
-
-
Chen, C.1
Kolodner, R.D.2
-
42
-
-
0031000629
-
A yeast replicative helicase, Dna2 helicase, interacts with yeast FEN-1 nuclease in carrying out its essential function
-
Budd ME, Campbell JL. A yeast replicative helicase, Dna2 helicase, interacts with yeast FEN-1 nuclease in carrying out its essential function. Mol Cell Biol 1997; 17:2136-42. (Pubitemid 27133299)
-
(1997)
Molecular and Cellular Biology
, vol.17
, Issue.4
, pp. 2136-2142
-
-
Budd, M.E.1
Campbell, J.L.2
-
43
-
-
0038239288
-
Bimodal interaction between replication-protein A and Dna2 is critical for Dna2 function both in vivo and in vitro
-
DOI 10.1093/nar/gkg422
-
Bae KH, Kim HS, Bae SH, Kang HY, Brill S, Seo YS. Bimodal interaction between replication-protein A and Dna2 is critical for Dna2 function both in vivo and in vitro. Nucl Acids Res 2003; 31:3006-15. (Pubitemid 37441758)
-
(2003)
Nucleic Acids Research
, vol.31
, Issue.12
, pp. 3006-3015
-
-
Bae, K.-H.1
Kim, H.-S.2
Bae, S.-H.3
Kang, H.-Y.4
Brill, S.5
Seo, Y.-S.6
-
44
-
-
0035954737
-
RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes
-
Bae SH, Bae KH, Kim JA, Seo YS. RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes. Nature 2001; 412:456-61.
-
(2001)
Nature
, vol.412
, pp. 456-461
-
-
Bae, S.H.1
Bae, K.H.2
Kim, J.A.3
Seo, Y.S.4
-
45
-
-
0037449738
-
Okazaki fragment maturation in yeast. I. Distribution of functions between Fen1 and Dna2
-
Ayyagari R, Gomes XV, Gordenin DA, Burgers PMJ. Okazaki fragment maturation in yeast. I. Distribution of functions between Fen1 and Dna2. J Biol Chem 2003; 278:1618-25.
-
(2003)
J Biol Chem
, vol.278
, pp. 1618-1625
-
-
Ayyagari, R.1
Gomes, X.V.2
Gordenin, D.A.3
Burgers, P.M.J.4
-
46
-
-
2442601582
-
On the Roles of Saccharomyces cerevisiae Dna2p and Flap Endonuclease 1 in Okazaki Fragment Processing
-
DOI 10.1074/jbc.M313216200
-
Kao HI, Veeraraghavan J, Polaczek P, Campbell JL, Bambara RA. On the roles of Saccharomyces cerevisiae Dna2p and FEN1 in Okazaki fragment processing. J Biol Chem 2004; 279:15014-24. (Pubitemid 38618894)
-
(2004)
Journal of Biological Chemistry
, vol.279
, Issue.15
, pp. 15014-15024
-
-
Kao, H.-I.1
Veeraraghavan, J.2
Polaczek, P.3
Campbell, J.L.4
Bambara, R.A.5
-
47
-
-
0031442653
-
A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair
-
DOI 10.1016/S0092-8674(00)81846-2
-
Tishkoff DX, Filosi N, Gaida GM, Kolodner RD. A novel mutation avoidance mechanism dependent on Saccharomyces cerevisiae RAD27 is distinct from DNA mismatch repair. Cell 1997; 88:253-63. (Pubitemid 28015874)
-
(1997)
Cell
, vol.88
, Issue.2
, pp. 253-263
-
-
Tishkoff, D.X.1
Filosi, N.2
Gaida, G.M.3
Kolodner, R.D.4
-
48
-
-
0035861532
-
Systematic genetic analysis with ordered arrays of yeast deletion mutants
-
DOI 10.1126/science.1065810
-
Tong AHY, Evangelista M, Parsons AB, Xu H, Bader GD, Page N, et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 2001; 294:2364-8. (Pubitemid 33140562)
-
(2001)
Science
, vol.294
, Issue.5550
, pp. 2364-2368
-
-
Tong, A.H.Y.1
Evangelista, M.2
Parsons, A.B.3
Xu, H.4
Bader, G.D.5
Page, N.6
Robinson, M.7
Raghibizadeh, S.8
Hogue, C.W.V.9
Bussey, H.10
Andrews, B.11
Tyers, M.12
Boone, C.13
-
49
-
-
10744230485
-
Global Mapping of the Yeast Genetic Interaction Network
-
DOI 10.1126/science.1091317
-
Tong AHY, Lesage G, Bader GD, Ding H, Xu H, Xin X, et al. Global mapping of the yeast genetic interaction network. Science 2004; 303:808-13. (Pubitemid 38174652)
-
(2004)
Science
, vol.303
, Issue.5659
, pp. 808-813
-
-
Tong, A.H.Y.1
Lesage, G.2
Bader, G.D.3
Ding, H.4
Xu, H.5
Xin, X.6
Young, J.7
Berriz, G.F.8
Brost, R.L.9
Chang, M.10
Chen, Y.11
Cheng, X.12
Chua, G.13
Friesen, H.14
Goldberg, D.S.15
Haynes, J.16
Humphries, C.17
He, G.18
Hussein, S.19
Ke, L.20
Krogan, N.21
Li, Z.22
Levinson, J.N.23
Lu, H.24
Menard, P.25
Munyana, C.26
Parsons, A.B.27
Ryan, O.28
Tonikian, R.29
Roberts, T.30
Sdicu, A.-M.31
Shapiro, J.32
Sheikh, B.33
Suter, B.34
Wong, S.L.35
Zhang, L.V.36
Zhu, H.37
Burd, C.G.38
Munro, S.39
Sander, C.40
Rine, J.41
Greenblatt, J.42
Peter, M.43
Bretscher, A.44
Bell, G.45
Roth, F.P.46
Brown, G.W.47
Andrews, B.48
Bussey, H.49
Boone, C.50
more..
-
50
-
-
33749603235
-
A Network of Multi-Tasking Proteins at the DNA Replication Fork Preserves Genome Stability
-
Budd ME, Tong AH, Polaczek P, Peng X, Boone C, Campbell JL. A Network of Multi-Tasking Proteins at the DNA Replication Fork Preserves Genome Stability. PLoS Genet 2005; 1:634-50.
-
(2005)
PLoS Genet
, vol.1
, pp. 634-650
-
-
Budd, M.E.1
Tong, A.H.2
Polaczek, P.3
Peng, X.4
Boone, C.5
Campbell, J.L.6
-
51
-
-
13944259332
-
Genetic network interactions among replication, repair and nuclear pore deficiencies in yeast
-
DOI 10.1016/j.dnarep.2004.11.010
-
Loeillet S, Palancade B, Cartron M, Thierry A, Fichard GF, Dujon B, et al. Genetic network interactions among replication repair and nuclear pore deficiencies in yeast. DNA Repair 2005; 4:459-68. (Pubitemid 40267704)
-
(2005)
DNA Repair
, vol.4
, Issue.4
, pp. 459-468
-
-
Loeillet, S.1
Palancade, B.2
Cartron, M.3
Thierry, A.4
Richard, G.-F.5
Dujon, B.6
Doye, V.7
Nicolas, A.8
-
52
-
-
33645215616
-
Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta
-
Budd ME, Reis CC, Smith S, Myung K, Campbell JL. Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta. Mol Cell Biol 2006; 26:2490-500.
-
(2006)
Mol Cell Biol
, vol.26
, pp. 2490-2500
-
-
Budd, M.E.1
Reis, C.C.2
Smith, S.3
Myung, K.4
Campbell, J.L.5
-
53
-
-
1242351988
-
A domain of Rad9 specifically required for activation of Chk1 in budding yeast
-
Blankley RTLD. A domain of Rad9 specifically required for activation of Chk1 in budding yeast. J Cell Sci 2004; 117:601-8.
-
(2004)
J Cell Sci
, vol.117
, pp. 601-608
-
-
Blankley, R.T.L.D.1
-
54
-
-
34848877244
-
The checkpoint Saccharomyces cerevisiae Rad9 protein contains a tandem tudor domain that recognizes DNA
-
DOI 10.1093/nar/gkm607
-
Lancelot NCG, Couprie J, Duband-Goulet I, Alpha-Bazin B, Quemeneur E, Ma E, et al. The checkpoint Saccharomyces cerevisiae Rad9 protein contains a tandem tufor domain that recognizes DNA. Nucleic Acids Res 2007; 35:5898-912. (Pubitemid 47506304)
-
(2007)
Nucleic Acids Research
, vol.35
, Issue.17
, pp. 5898-5912
-
-
Lancelot, N.1
Charier, G.2
Couprie, J.3
Duband-Goulet, I.4
Alpha-Bazin, B.5
Quemeneur, E.6
Ma, E.7
Marsolier-Kergoat, M.-C.8
Ropars, V.9
Charbonnier, J.-B.10
Miron, S.11
Craescu, C.T.12
Callebaut, I.13
Gilquin, B.14
Zinn-justin, S.15
-
55
-
-
0033587049
-
The BRCT domain of the S. cerevisiae checkpoint protein Rad9 mediates a Rad9-Rad9 interaction after DNA damage
-
Soulier JLN. The BRCT domain of the S. cerevisiae checkpoint protein Rad9 mediates a Rad9-Rad9 interaction after DNA damage. Curr Biol 1999; 9:551-4.
-
(1999)
Curr Biol
, vol.9
, pp. 551-554
-
-
Soulier, J.L.N.1
-
56
-
-
0034693461
-
Green Fluorescent Protein in Saccharomyces cerevisiae: Real-time studies of the GAL1 Promoter
-
Li JWSVW, Schultz LD, George HA, Herber WK, Chae HJ, Bentley WE, Rao G. Green Fluorescent Protein in Saccharomyces cerevisiae: real-time studies of the GAL1 Promoter. Biotechnol Bioeng 2000; 70:187-96.
-
(2000)
Biotechnol Bioeng
, vol.70
, pp. 187-196
-
-
Li, J.W.S.V.W.1
Schultz, L.D.2
George, H.A.3
Herber, W.K.4
Chae, H.J.5
Bentley, W.E.6
Rao, G.7
-
57
-
-
0031000629
-
A yeast replicative helicase, Dna2 helicase, interacts with yeast FEN-1 nuclease in carrying out its essential function
-
Budd ME, Campbell JL. A yeast replicative helicase, Dna2 helicase, interacts with yeast FEN-1 nuclease in carrying out its essential function. Mol Cell Biol 1997; 17:2136-42. (Pubitemid 27133299)
-
(1997)
Molecular and Cellular Biology
, vol.17
, Issue.4
, pp. 2136-2142
-
-
Budd, M.E.1
Campbell, J.L.2
-
59
-
-
1642324918
-
Stimulation of Flap Endonuclease-1 by the Bloom's Syndrome Protein
-
DOI 10.1074/jbc.M309898200
-
Sharma S, Sommers JA, Wu L, Bohr VA, Hickson ID, Brosh RM Jr. Stimulation of flap endonuclease-1 by the Bloom's syndrome protein. J Biol Chem 2004; 279:9847-56. (Pubitemid 38372583)
-
(2004)
Journal of Biological Chemistry
, vol.279
, Issue.11
, pp. 9847-9856
-
-
Sharma, S.1
Sommers, J.A.2
Wu, L.3
Bohr, V.A.4
Hickson, I.D.5
Brosh Jr., R.M.6
-
60
-
-
33749603235
-
A network of multi-tasking proteins at the DNA replication fork preserves genome stability
-
Budd ME, Tong AH, Polaczek P, Peng X, Boone C, Campbell JL. A network of multi-tasking proteins at the DNA replication fork preserves genome stability. PLoS Genet 2005; 1:61.
-
(2005)
PLoS Genet
, vol.1
, pp. 61
-
-
Budd, M.E.1
Tong, A.H.2
Polaczek, P.3
Peng, X.4
Boone, C.5
Campbell, J.L.6
-
61
-
-
67449091971
-
The MPH1 gene of Saccharomyces cerevisiae functions in Okazaki fragment processing
-
Kang YH, Kang MJ, Kim JH, Lee CH, Cho IT, Hurwitz J, et al. The MPH1 gene of Saccharomyces cerevisiae functions in Okazaki fragment processing. J Biol Chem 2009; 284:10376-86.
-
(2009)
J Biol Chem
, vol.284
, pp. 10376-10386
-
-
Kang, Y.H.1
Kang, M.J.2
Kim, J.H.3
Lee, C.H.4
Cho, I.T.5
Hurwitz, J.6
-
63
-
-
27744445335
-
The yeast Pif1p helicase removes telomerase from telomeric DNA
-
DOI 10.1038/nature04091, PII N04091
-
Boule JB, Vega LR, Zakian VA. The yeast Pif1p helicase removes telomerase from telomeric DNA. Nature 2005; 438:57-61. (Pubitemid 41599817)
-
(2005)
Nature
, vol.438
, Issue.7064
, pp. 57-61
-
-
Boule, J.-B.1
Vega, L.R.2
Zakian, V.A.3
-
64
-
-
34848908787
-
The yeast Pif1 DNA helicase preferentially unwinds RNA DNA substrates
-
Boule JB. The yeast Pif1 DNA helicase preferentially unwinds RNA DNA substrates. Nucleic Acids Res 2007; 35:5809-18.
-
(2007)
Nucleic Acids Res
, vol.35
, pp. 5809-5818
-
-
Boule, J.B.1
-
65
-
-
0345826100
-
The Pol32 Subunit of DNA Polymerase δ Contains Separable Domains for Processive Replication and Proliferating Cell Nuclear Antigen (PCNA) Binding
-
DOI 10.1074/jbc.M310362200
-
Johansson E, Garg P, Burgers PMJ. The Pol32 subunit of DNA polymerase δ contains separable domains for processive replication and proliferating cell nuclear antigen (PCNA) binding. J Biol Chem 2004; 279:1907-15. (Pubitemid 38084461)
-
(2004)
Journal of Biological Chemistry
, vol.279
, Issue.3
, pp. 1907-1915
-
-
Johansson, E.1
Garg, P.2
Burgers, P.M.J.3
-
66
-
-
0029066943
-
Suppression of Mutations in Two Saccharomyces cerevisiae Genes by the Adenovirus E1A Protein
-
Zieler HA WM, Berg P. Suppression of Mutations in Two Saccharomyces cerevisiae Genes by the Adenovirus E1A Protein. Mol Cell Biol 1995; 15:3227-37.
-
(1995)
Mol Cell Biol
, vol.15
, pp. 3227-3237
-
-
Zieler, H.A.W.M.1
Berg, P.2
-
67
-
-
0030687647
-
Characterization of Saccharomyces cerevisiae dna2 mutants suggests a role for the helicase late in S phase
-
Fiorentino DF, Crabtree GR. Characterization of Saccharomyces cerevisiae dna2 mutants suggests a role for the helicase late in S phase. Mol Biol Cell 1997; 8:2519-37.
-
(1997)
Mol Biol Cell
, vol.8
, pp. 2519-2537
-
-
Fiorentino, D.F.1
Crabtree, G.R.2
-
68
-
-
0032943760
-
Dna2 mutants reveal interactions with Dna polymerase alpha and Ctf4, a Pol α accessory factor, and show that full Dna2 helicase activity is not essential for growth
-
Formosa T, Nitiss T. Dna2 mutants reveal interactions with DNA polymerase alpha and Ctf4, a Pol α accessory factor and show that full DNA2 helicase activity is not essential for growth. Genetics 1999; 151:1459-70. (Pubitemid 29177555)
-
(1999)
Genetics
, vol.151
, Issue.4
, pp. 1459-1470
-
-
Formosa, T.1
Nittis, T.2
-
69
-
-
79955934251
-
Defects in DNA ligase 1 trigger PCNA ubiquitylation at Lys 107
-
Das-Bradoo SNH, Wood JL, Ricke RM, Haworth JC, Bielinsky AK. Defects in DNA ligase 1 trigger PCNA ubiquitylation at Lys 107. Nat Cell Biol 2010; 12:74-9.
-
(2010)
Nat Cell Biol
, vol.12
, pp. 74-79
-
-
Das-Bradoo, S.N.H.1
Wood, J.L.2
Ricke, R.M.3
Haworth, J.C.4
Bielinsky, A.K.5
-
70
-
-
0036545865
-
Involvement of RAD9-dependent damage checkpoint control in arrest of cell cycle, induction of cell death, and chromosome instability caused by defects in origin recognition complex in Saccharomyces cerevisiae
-
DOI 10.1128/EC.1.2.200-212.2002
-
Watanabe KMJ, Umezu K, Shirahige K, Maki H. Involvement of RAD9-Dependent Damage Checkpoint Control in Arrest of Cell Cycle, Induction of Cell Death and Chromosome Instability Caused by Defects in Origin Recognition Complex in Saccharomyces cerevisiae. Eukaryotic Cell 2002; 1:200-12. (Pubitemid 36562397)
-
(2002)
Eukaryotic Cell
, vol.1
, Issue.2
, pp. 200-212
-
-
Watanabe, K.1
Morishita, J.2
Umezu, K.3
Shirahige, K.4
Maki, H.5
-
72
-
-
0036671706
-
Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase
-
DOI 10.1016/S1097-2765(02)00593-2
-
Vaze MB, Pellicioli A, Lee SE, Ira G, Liberi G, Arbel-Eden A, et al. Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol Cell 2002; 10:373-85. (Pubitemid 35007351)
-
(2002)
Molecular Cell
, vol.10
, Issue.2
, pp. 373-385
-
-
Vaze, M.B.1
Pellicioli, A.2
Lee, S.E.3
Ira, G.4
Liberi, G.5
Arbel-Eden, A.6
Foiani, M.7
Haber, J.E.8
-
73
-
-
0033120953
-
Chromosomal ARS1 has a single leading strand start site
-
DOI 10.1016/S1097-2765(00)80475-X
-
Bielinsky AK, Gerbi SA. Chromosomal ARS1 has a single leading strand start site. Mol Cell 1999; 3:477-86. (Pubitemid 29292604)
-
(1999)
Molecular Cell
, vol.3
, Issue.4
, pp. 477-486
-
-
Bielinsky, A.-K.1
Gerbi, S.A.2
-
74
-
-
51549095956
-
Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-Strand break ends
-
Zhu Z, Chung WH, Shi EY, Lee SE, Ira G. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-Strand break ends. Cell 2008; 134:981-94.
-
(2008)
Cell
, vol.134
, pp. 981-994
-
-
Zhu, Z.1
Chung, W.H.2
Shi, E.Y.3
Lee, S.E.4
Ira, G.5
-
75
-
-
77953517313
-
Coordination of Nucleases and Helicases during DNA Replication and Double-strand Break Repair
-
Cox LS, ed. London: RSC Publishing
-
Budd ME, Cox Ls, Campbell JL. Coordination of Nucleases and Helicases during DNA Replication and Double-strand Break Repair. In: Cox LS, ed. Molecular Themes in DNA Replication. London: RSC Publishing 2009.
-
(2009)
Molecular Themes in DNA Replication
-
-
Budd, M.E.1
Cox, L.S.2
Campbell, J.L.3
-
76
-
-
77956325620
-
DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2
-
Cejka P, Cannavo E, Polaczek P, Masuda-Sasa T, Pokharel S, Campbell JL, et al. DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2. Nature 2010; 467:112-6.
-
(2010)
Nature
, vol.467
, pp. 112-116
-
-
Cejka, P.1
Cannavo, E.2
Polaczek, P.3
Masuda-Sasa, T.4
Pokharel, S.5
Campbell, J.L.6
-
77
-
-
0030898435
-
Exonuclease I of Sacchromyces cerevisiae functions in mitotic recombination in vivo and in vitro
-
Fiorentini P, Huang KN, Tishkoff DX, Kolodner RD, Symington LS. Exonuclease I of Sacchromyces cerevisiae functions in mitotic recombination in vivo and in vitro. Mol Cell Biol 1997; 17:2764-73.
-
(1997)
Mol Cell Biol
, vol.17
, pp. 2764-2773
-
-
Fiorentini, P.1
Huang, K.N.2
Tishkoff, D.X.3
Kolodner, R.D.4
Symington, L.S.5
-
78
-
-
0030806219
-
Identification and characterization of Saccharomyces cerevisiae EXO1, a gene encoding an exonuclease that interacts with MSH2
-
Tishkoff DX, Boerger AL, Bertrand P, Filosi N, Gaida GM, Kane MF, et al. Identification and characterization of Saccharomyces cerevisiae EXO1, a gene encoding an exonuclease that interacts with MSH2. Proc Natl Acad Sci USA 1997; 94:7487-92.
-
(1997)
Proc Natl Acad Sci USA
, vol.94
, pp. 7487-7492
-
-
Tishkoff, D.X.1
Boerger, A.L.2
Bertrand, P.3
Filosi, N.4
Gaida, G.M.5
Kane, M.F.6
-
79
-
-
2442520305
-
EXO1 contributes to telomere maintenance in both telomerase-proficient and telomerase-deficient Saccharomyces cerevisiae
-
Bertuch AA, Lundblad V. EXO1 contributes to telomere maintenance in both telomerase-proficient and telomerase-deficient Saccharomyces cerevisiae. Genetics 2004; 166:1651-9.
-
(2004)
Genetics
, vol.166
, pp. 1651-1659
-
-
Bertuch, A.A.1
Lundblad, V.2
-
80
-
-
0028822203
-
Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint
-
Garvik BCM, Hartweill L. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol Cell Biol 1995; 15:6128-38.
-
(1995)
Mol Cell Biol
, vol.15
, pp. 6128-6138
-
-
Garvik, B.C.M.1
Hartweill, L.2
-
81
-
-
0035504409
-
Quantitative amplification of single-stranded DNA (QAOS) demonstrates that cdc13-1 mutants generate ssDNA in a telomere to centromere direction
-
Booth CGE, Brady G, Lydall D. Quantitatve amplifiation of single-stranded DNA (QAOS) demonstrates that cdc13-1 mutants generate ssDNA in a telomere to centromere direction. Nucleic Acids Res 2001; 29:4414-22. (Pubitemid 33064782)
-
(2001)
Nucleic Acids Research
, vol.29
, Issue.21
, pp. 4414-4422
-
-
Booth, C.1
Griffith, E.2
Brady, G.3
Lydall, D.4
-
82
-
-
5144219712
-
Exo1 and Rad24 differentially regulate generation of ssDNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants
-
Zubko MK, Guillard S, Lydall D. Exo1 and Rad24 differentially regulate generation of ssDNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants. Genetics 2004; 168:103-15.
-
(2004)
Genetics
, vol.168
, pp. 103-115
-
-
Zubko, M.K.1
Guillard, S.2
Lydall, D.3
-
83
-
-
1642328772
-
Mec1 and Rad53 inhibit formation of single-stranded DNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants
-
Jia X, Weinert T, Lydall D. Mec1 and Rad53 inhibit formation of single-stranded DNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants. Genetics 2004; 166:753-64.
-
(2004)
Genetics
, vol.166
, pp. 753-764
-
-
Jia, X.1
Weinert, T.2
Lydall, D.3
-
84
-
-
46249122812
-
Separate roles for the DNA damage checkpoint protein kinases in stabilizing DNA replication forks
-
DOI 10.1101/gad.477208
-
Segurado M, Diffley JF. Separate roles for the DNA damage checkpoint protein kinases in stabilizing DNA replication forks. Genes Dev 2008; 22:1816-27. (Pubitemid 351915506)
-
(2008)
Genes and Development
, vol.22
, Issue.13
, pp. 1816-1827
-
-
Segurado, M.1
Diffley, J.F.X.2
-
85
-
-
11344268431
-
Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells
-
DOI 10.1016/j.molcel.2004.11.032, PII S109727650400718X
-
Cotta-Ramusino C, Fachinetti D, Lucca C, Doksani Y, Lopes M, Sogo J, et al. Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells. Mol Cell 2005; 17:153-9. (Pubitemid 40075374)
-
(2005)
Molecular Cell
, vol.17
, Issue.1
, pp. 153-159
-
-
Cotta-Ramusino, C.1
Fachinetti, D.2
Lucca, C.3
Doksani, Y.4
Lopes, M.5
Sogo, J.6
Foiani, M.7
-
86
-
-
44349180168
-
Histone methyltransferase Dot1 and Rad9 inhibit single-stranded DNA accumulation at DSBs and uncapped telomeres
-
DOI 10.1038/emboj.2008.81, PII EMBOJ200881
-
Lazzaro FSV, Granata M, Pellicioli A, Vaze M, Haber JE, Plevani P, et al. Histone metyltransferase Dot1 and Rad9 inhibit single-stranded DNA accumulation at DSBs and uncapped telomeres. EMBO J 2008; 27:1502-12. (Pubitemid 351733336)
-
(2008)
EMBO Journal
, vol.27
, Issue.10
, pp. 1502-1512
-
-
Lazzaro, F.1
Sapountzi, V.2
Granata, M.3
Pellicioli, A.4
Vaze, M.5
Haber, J.E.6
Plevani, P.7
Lydall, D.8
Muzi-Falconi, M.9
-
87
-
-
0028822203
-
Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint
-
published erratum appears in Mol Cell Biol 1996; 16:457
-
Garvik B, Carson M, Hartwell L. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint [published erratum appears in Mol Cell Biol 1996; 16:457]. Mol Cell Biol 1995; 15:6128-38.
-
(1995)
Mol Cell Biol
, vol.15
, pp. 6128-6138
-
-
Garvik, B.1
Carson, M.2
Hartwell, L.3
-
88
-
-
58149215803
-
Sensitive, specific polymorphism discovery in bacteria using massively parallel sequencing
-
Nusbaum C, Ohsumi TK, Gomez J, Aquadro J, Victor TC, Warren RM, et al. Sensitive, specific polymorphism discovery in bacteria using massively parallel sequencing. Nat Methods 2009; 6:67-9.
-
(2009)
Nat Methods
, vol.6
, pp. 67-69
-
-
Nusbaum, C.1
Ohsumi, T.K.2
Gomez, J.3
Aquadro, J.4
Victor, T.C.5
Warren, R.M.6
-
89
-
-
33748755119
-
Reconstituted Okazaki fragment processing indicates two pathways of primer removal
-
DOI 10.1074/jbc.M604805200
-
Rossi ML, Bambara RA. Reconstituted Okazaki fragment processing indicates two pathways of primer removal. J Biol Chem 2006; 281:26051-61. (Pubitemid 44401811)
-
(2006)
Journal of Biological Chemistry
, vol.281
, Issue.36
, pp. 26051-26061
-
-
Rossi, M.L.1
Bambara, R.A.2
-
90
-
-
55549146815
-
Pif1 helicase directs eukaryotic Okazaki fragments toward the two-nuclease cleavage pathway for primer removal
-
Rossi ML, Pike JE, Wang W, Burgers PM, Campbell JL, Bambara R. Pif1 helicase directs eukaryotic Okazaki fragments toward the two-nuclease cleavage pathway for primer removal. J Biol Chem 2008; 283:27483-93.
-
(2008)
J Biol Chem
, vol.283
, pp. 27483-27493
-
-
Rossi, M.L.1
Pike, J.E.2
Wang, W.3
Burgers, P.M.4
Campbell, J.L.5
Bambara, R.6
-
91
-
-
69949122831
-
Pif1 helicase lengthens some Okazaki fragment flaps necessitating Dna2 nuclease/helicase action in the two-nuclease processing pathway
-
Pike JE, Burgers PM, Campbell JL, Bambara RA. Pif1 helicase lengthens some Okazaki fragment flaps necessitating Dna2 nuclease/helicase action in the two-nuclease processing pathway. J Biol Chem 2009; 284:25170-80.
-
(2009)
J Biol Chem
, vol.284
, pp. 25170-25180
-
-
Pike, J.E.1
Burgers, P.M.2
Campbell, J.L.3
Bambara, R.A.4
-
92
-
-
55549146815
-
Pif1 helicase directs eukaryotic Okazaki fragments toward the two-nuclease cleavage pathway for primer removal
-
Rossi ML, Pike JE, Wang W, Burgers PM, Campbell JL, Bambara RA. Pif1 helicase directs eukaryotic Okazaki fragments toward the two-nuclease cleavage pathway for primer removal. J Biol Chem 2008; 283:27483-93.
-
(2008)
J Biol Chem
, vol.283
, pp. 27483-27493
-
-
Rossi, M.L.1
Pike, J.E.2
Wang, W.3
Burgers, P.M.4
Campbell, J.L.5
Bambara, R.A.6
-
93
-
-
57649114600
-
Dynamic removal of replication protein A by Dna2 facilitates primer cleavage during Okazaki fragment processing in Saccharomyces cerevisiae
-
Stewart JA, Miller AS, Campbell JL, Bambara RA. Dynamic removal of replication protein A by Dna2 facilitates primer cleavage during Okazaki fragment processing in Saccharomyces cerevisiae. J Biol Chem 2008; 283:31356-65.
-
(2008)
J Biol Chem
, vol.283
, pp. 31356-31365
-
-
Stewart, J.A.1
Miller, A.S.2
Campbell, J.L.3
Bambara, R.A.4
|