메뉴 건너뛰기




Volumn , Issue , 2011, Pages

Analyzing category correlations for recommendation system

Author keywords

Cold start problem; Genre correlation; Recommendation system; Sparsity problem

Indexed keywords

20TH CENTURY; COLD START PROBLEMS; COLLABORATIVE FILTERING; GENRE CORRELATION; INTERNET USERS; MODIFIED ALGORITHMS; RECOMMENDATION SYSTEMS; SPARSITY PROBLEM; SPARSITY PROBLEMS; USER INFORMATION; USER RATING; WEB 2.0;

EID: 79955982961     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1968613.1968615     Document Type: Conference Paper
Times cited : (3)

References (13)
  • 1
    • 57349146373 scopus 로고    scopus 로고
    • Lessons from the netflix prize challenge
    • R. M. Bell and Y. Koren. Lessons from the netflix prize challenge. SIGKDD Explorations, 9(2):75-79, 2007.
    • (2007) SIGKDD Explorations , vol.9 , Issue.2 , pp. 75-79
    • Bell, R.M.1    Koren, Y.2
  • 5
    • 71249147217 scopus 로고    scopus 로고
    • Collaborative filtering by sequential extraction of user-item clusters based on structural balancing approach
    • 2009
    • K. Honda, A. Notsu, and H. Ichihashi. Collaborative filtering by sequential extraction of user-item clusters based on structural balancing approach. In Fuzzy Systems, 2009., pages 1540-1545, 2009.
    • (2009) Fuzzy Systems , pp. 1540-1545
    • Honda, K.1    Notsu, A.2    Ichihashi, H.3
  • 6
    • 3042819722 scopus 로고    scopus 로고
    • Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering
    • Z. Huang, H. Chen, and D. D. Zeng. Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM Trans. Inf. Syst., 22(1):116-142, 2004.
    • (2004) ACM Trans. Inf. Syst. , vol.22 , Issue.1 , pp. 116-142
    • Huang, Z.1    Chen, H.2    Zeng, D.D.3
  • 12
    • 35048852118 scopus 로고    scopus 로고
    • Utilizing artificial learners to help overcome the cold-start problem in a pedagogically-oriented paper recommendation system
    • T. Y. Tang and G. I. McCalla. Utilizing artificial learners to help overcome the cold-start problem in a pedagogically-oriented paper recommendation system. In Adaptive Hypermedia and Adaptive Web-Based Systems, Third International Conference, pages 245-254, 2004.
    • (2004) Adaptive Hypermedia and Adaptive Web-Based Systems, Third International Conference , pp. 245-254
    • Tang, T.Y.1    McCalla, G.I.2
  • 13
    • 0141499253 scopus 로고    scopus 로고
    • Sparsity reduction in collaborative recommendation: A case-based approach
    • D. C. Wilson, B. Smyth, and D. O'Sullivan. Sparsity reduction in collaborative recommendation: A case-based approach. IJPRAI, 17(5):863-884, 2003.
    • (2003) IJPRAI , vol.17 , Issue.5 , pp. 863-884
    • Wilson, D.C.1    Smyth, B.2    O'Sullivan, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.