메뉴 건너뛰기




Volumn 9, Issue 3, 2005, Pages 226-234

Improved ANN Based Tap-Changer Controller Using Modified Cascade-Correlation Algorithm

Author keywords

Bayesian regularization; cascade correlation; neural network application; transformers tap changers; voltage control

Indexed keywords

ELECTRIC POWER DISTRIBUTION;

EID: 79955954078     PISSN: 13430130     EISSN: 18838014     Source Type: Journal    
DOI: 10.20965/jaciii.2005.p0226     Document Type: Article
Times cited : (3)

References (24)
  • 2
    • 85168649751 scopus 로고    scopus 로고
    • Artificial neural network for parallel transformers tap-changer control for closed primary bus connection
    • Churchurch, New Zealand
    • F. Islam, J. Kamruzzaman, and G. Lu, “Artificial neural network for parallel transformers tap-changer control for closed primary bus connection,” Proc. of Australasian Universities Power Engineering Conf., AUPEC 2003, Churchurch, New Zealand, pp. 51-56, 2003.
    • (2003) Proc. of Australasian Universities Power Engineering Conf., AUPEC 2003 , pp. 51-56
    • Islam, F.1    Kamruzzaman, J.2    Lu, G.3
  • 4
    • 0027662338 scopus 로고
    • pruning algorithm – a survey
    • R. Reed, “pruning algorithm – a survey,” IEEE Transactions on Neural Networks, Vol.5, pp. 740-746, 1993.
    • (1993) IEEE Transactions on Neural Networks , vol.5 , pp. 740-746
    • Reed, R.1
  • 5
    • 0031275196 scopus 로고    scopus 로고
    • Voltage control by tap changing transformers for a radial distribution network
    • M. R. Salem, L. A. Talat, and H. M. Soliman, “Voltage control by tap changing transformers for a radial distribution network,” IEE proc -Gener. Transm. Distrib., Vol.144, pp. 517-520, 1997.
    • (1997) IEE proc -Gener. Transm. Distrib , vol.144 , pp. 517-520
    • Salem, M. R.1    Talat, L. A.2    Soliman, H. M.3
  • 10
    • 0032795250 scopus 로고    scopus 로고
    • Modeling with constructive backpropagation
    • M. Lehtokangas, “Modeling with constructive backpropagation,” Neural Networks, Vol.12, pp. 707-716, 1999.
    • (1999) Neural Networks , vol.12 , pp. 707-716
    • Lehtokangas, M.1
  • 12
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • M. Mooler, “A scaled conjugate gradient algorithm for fast supervised learning,” Neural Networks, Vol.6, pp. 525-533, 1993.
    • (1993) Neural Networks , vol.6 , pp. 525-533
    • Mooler, M.1
  • 13
    • 0034187293 scopus 로고    scopus 로고
    • Modified cascade-correlation learning for classification
    • M. Lehtokangas, “Modified cascade-correlation learning for classification,” IEEE Trans. Neural Networks, Vol.11, pp. 795-798, 2000.
    • (2000) IEEE Trans. Neural Networks , vol.11 , pp. 795-798
    • Lehtokangas, M.1
  • 15
    • 0001942829 scopus 로고
    • Neural network and the bias/variance delimma
    • S. German, E. Bienenstock, and R. Doursat, “Neural network and the bias/variance delimma,” Neural Computation, Vol.4, pp. 1-58, 1992.
    • (1992) Neural Computation , vol.4 , pp. 1-58
    • German, S.1    Bienenstock, E.2    Doursat, R.3
  • 16
    • 0031142667 scopus 로고    scopus 로고
    • An iterative pruning algorithm for feedforward neural network
    • G. Castellano, and A. M. Fanelli, “An iterative pruning algorithm for feedforward neural network,” IEEE Trans. on Neural Networks, Vol.8, pp. 519-531, 1997.
    • (1997) IEEE Trans. on Neural Networks , vol.8 , pp. 519-531
    • Castellano, G.1    Fanelli, A. M.2
  • 17
    • 0030108039 scopus 로고    scopus 로고
    • The cascade-correlation learning: A projection pursuit learning perspective
    • J. Hwang, S. You, S. Lay, and I. Jou, “The cascade-correlation learning: A projection pursuit learning perspective,” IEEE Trans. on Neural Networks, Vol.7, pp. 278-289, 1996.
    • (1996) IEEE Trans. on Neural Networks , vol.7 , pp. 278-289
    • Hwang, J.1    You, S.2    Lay, S.3    Jou, I.4
  • 19
    • 0023981865 scopus 로고
    • A neural network for visual pattern recognition
    • K. Fukushima, “A neural network for visual pattern recognition,” IEEE computer, Vol.21, pp. 65-75, 1988.
    • (1988) IEEE computer , vol.21 , pp. 65-75
    • Fukushima, K.1
  • 20
    • 0028496580 scopus 로고
    • Weight smoothing to improve network generalization
    • J. S. N. Jean, and J. Wang, “Weight smoothing to improve network generalization,” IEEE Trans. on Neural Networks, Vol.5, pp. 752-763, 1994.
    • (1994) IEEE Trans. on Neural Networks , vol.5 , pp. 752-763
    • Jean, J. S. N.1    Wang, J.2
  • 21
    • 0001025418 scopus 로고
    • A practical Bayesian framework for backpropaga-tions
    • D. J. MacKay, “A practical Bayesian framework for backpropaga-tions,” Neural Computation, Vol.4, pp. 415-447, 1992.
    • (1992) Neural Computation , vol.4 , pp. 415-447
    • MacKay, D. J.1
  • 22
    • 0001362410 scopus 로고
    • The Levenberg-Marquart algorithm: implementation and theory
    • G.A. Watson, ed., London: Springer-Verlag
    • J. J. More, “The Levenberg-Marquart algorithm: implementation and theory,” in G.A. Watson, ed., Numerical analysis. Lecture Notes in Mathematics, pp. 105-16, London: Springer-Verlag, 1977.
    • (1977) Numerical analysis. Lecture Notes in Mathematics , pp. 105-116
    • More, J. J.1
  • 24
    • 0032115118 scopus 로고    scopus 로고
    • Monitoring and assessment of voltage stability margins using artificial neural networks with a reduced input set
    • D. Popovic, D. Kukolj, and F. Kulic, “Monitoring and assessment of voltage stability margins using artificial neural networks with a reduced input set,” IEE Proc. Gener. Transm., Vol.145, pp. 355-361, 1998.
    • (1998) IEE Proc. Gener. Transm , vol.145 , pp. 355-361
    • Popovic, D.1    Kukolj, D.2    Kulic, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.