메뉴 건너뛰기




Volumn 141, Issue 9, 2011, Pages 3181-3192

Estimating common parameters in heterogeneous random effects models

Author keywords

Almost unbiased variance estimator; DerSimonian Laird procedure; Estimating equation; Growth curve model; Maximum likelihood; Meta analysis; Random coefficient model; Variance components

Indexed keywords


EID: 79955809122     PISSN: 03783758     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jspi.2011.04.005     Document Type: Article
Times cited : (4)

References (24)
  • 2
    • 0036390848 scopus 로고    scopus 로고
    • Growth modeling using random coefficient models: model building, testing and illustrations
    • Bliese P.D., Ployhart R.E. Growth modeling using random coefficient models: model building, testing and illustrations. Organizational Research Methods 2002, 5:362-387.
    • (2002) Organizational Research Methods , vol.5 , pp. 362-387
    • Bliese, P.D.1    Ployhart, R.E.2
  • 6
    • 79955852571 scopus 로고    scopus 로고
    • Report on Key Comparison SIM.AUV.V-K1, Metrologia 46 Technical Supplement 09002.
    • Evans, D., Hornikova, A., Leigh, S., Rukhin, A.L., Strawderman, W., 2009. Report on Key Comparison SIM.AUV.V-K1, Metrologia 46 Technical Supplement 09002.
    • (2009)
    • Evans, D.1    Hornikova, A.2    Leigh, S.3    Rukhin, A.L.4    Strawderman, W.5
  • 7
    • 0032886748 scopus 로고    scopus 로고
    • Valid inference in random effects meta-analysis
    • Follmann D.A., Proshan M.A. Valid inference in random effects meta-analysis. Biometrics 1999, 55:732-737.
    • (1999) Biometrics , vol.55 , pp. 732-737
    • Follmann, D.A.1    Proshan, M.A.2
  • 8
    • 0001410775 scopus 로고
    • Combining unbiased estimators
    • Graybill F.A., Deal R.D. Combining unbiased estimators. Biometrics 1959, 15:543-550.
    • (1959) Biometrics , vol.15 , pp. 543-550
    • Graybill, F.A.1    Deal, R.D.2
  • 12
    • 71649090646 scopus 로고    scopus 로고
    • How does the DerSimonian and Laird procedure for random effects meta-analysis compare with its more efficient but harder to compute counterparts?
    • Jackson D., Bowden J., Baker R. How does the DerSimonian and Laird procedure for random effects meta-analysis compare with its more efficient but harder to compute counterparts?. Journal of Statistical Planning and Inference 2010, 140:961-970.
    • (2010) Journal of Statistical Planning and Inference , vol.140 , pp. 961-970
    • Jackson, D.1    Bowden, J.2    Baker, R.3
  • 14
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • Laird N., Ware J.H. Random-effects models for longitudinal data. Biometrics 1982, 38:963-974.
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.1    Ware, J.H.2
  • 16
    • 79955839522 scopus 로고
    • Estimation of weighting factors in linear regression and analysis of variance
    • Mandel J. Estimation of weighting factors in linear regression and analysis of variance. Technometrics 1964, 6:1-25.
    • (1964) Technometrics , vol.6 , pp. 1-25
    • Mandel, J.1
  • 19
    • 79955851624 scopus 로고
    • Analysis of interlaboratory measurements on the vapor pressure of cadmium and silver. National Bureau of Standards Special Publication
    • Paule, R.C., Mandel, J. 1971. Analysis of interlaboratory measurements on the vapor pressure of cadmium and silver. National Bureau of Standards Special Publication, 260-21.
    • (1971) , pp. 260-21
    • Paule, R.C.1    Mandel, J.2
  • 21
    • 84972496336 scopus 로고
    • That BLUP is a good thing: the estimation of random effects
    • Robinson G.K. That BLUP is a good thing: the estimation of random effects. Statistical Science 1991, 6:15-32.
    • (1991) Statistical Science , vol.6 , pp. 15-32
    • Robinson, G.K.1
  • 22
    • 33751012987 scopus 로고    scopus 로고
    • Estimating common vector mean in interlaboratory studies
    • Rukhin A.L. Estimating common vector mean in interlaboratory studies. Journal of Multivariate Analysis 2007, 98:434-435.
    • (2007) Journal of Multivariate Analysis , vol.98 , pp. 434-435
    • Rukhin, A.L.1
  • 23
    • 0031479639 scopus 로고    scopus 로고
    • Built-in-restrictions on best linear predictors (BLUP) of random effects in mixed models
    • Searle S. Built-in-restrictions on best linear predictors (BLUP) of random effects in mixed models. American Statistician 1997, 51:19-21.
    • (1997) American Statistician , vol.51 , pp. 19-21
    • Searle, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.