-
1
-
-
0037138004
-
Nonlinear geometric optics for short pulses
-
Alterman Deborah, Rauch Jeffrey Nonlinear geometric optics for short pulses. J. Differential Equations 2002, 178(2):437-465.
-
(2002)
J. Differential Equations
, vol.178
, Issue.2
, pp. 437-465
-
-
Alterman, D.1
Rauch, J.2
-
2
-
-
0038134927
-
A general framework for diffractive optics and its applications to lasers with large spectrums and short pulses
-
Barrailh Karen, Lannes David A general framework for diffractive optics and its applications to lasers with large spectrums and short pulses. SIAM J. Math. Anal. 2003, 34(3):636-674.
-
(2003)
SIAM J. Math. Anal.
, vol.34
, Issue.3
, pp. 636-674
-
-
Barrailh, K.1
Lannes, D.2
-
3
-
-
0000784514
-
Nonlinear modulation of gravity waves: a rigorous approach
-
Craig W., Sulem C., Sulem P.-L. Nonlinear modulation of gravity waves: a rigorous approach. Nonlinearity 1992, 5(2):497-522.
-
(1992)
Nonlinearity
, vol.5
, Issue.2
, pp. 497-522
-
-
Craig, W.1
Sulem, C.2
Sulem, P.-L.3
-
5
-
-
23044531142
-
KP description of unidirectional long waves. The model case
-
Gallay Thierry, Schneider Guido KP description of unidirectional long waves. The model case. Proc. Roy. Soc. Edinburgh Sect. A 2001, 131(4):885-898.
-
(2001)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.131
, Issue.4
, pp. 885-898
-
-
Gallay, T.1
Schneider, G.2
-
6
-
-
0034259179
-
Transparent nonlinear geometric optics and Maxwell-Bloch equations
-
Joly Jean-Luc, Metivier Guy, Rauch Jeffrey Transparent nonlinear geometric optics and Maxwell-Bloch equations. J. Differential Equations 2000, 166:175-250.
-
(2000)
J. Differential Equations
, vol.166
, pp. 175-250
-
-
Joly, J.-L.1
Metivier, G.2
Rauch, J.3
-
7
-
-
0042889365
-
Asymptotic decay of a one-dimensional wave packet in a nonlinear dispersive medium
-
592
-
Kalyakin L.A. Asymptotic decay of a one-dimensional wave packet in a nonlinear dispersive medium. Mat. Sb. (N.S.) 1987, 132(174(4)):470-495. 592.
-
(1987)
Mat. Sb. (N.S.)
, vol.132-174
, Issue.4
, pp. 470-495
-
-
Kalyakin, L.A.1
-
8
-
-
0031533152
-
How real is resonance?
-
McKean Henry P. How real is resonance?. Comm. Pure Appl. Math. 1997, 50(4):317-322.
-
(1997)
Comm. Pure Appl. Math.
, vol.50
, Issue.4
, pp. 317-322
-
-
McKean, H.P.1
-
9
-
-
84985386714
-
Validity and limitation of the Newell-Whitehead equation
-
Schneider Guido Validity and limitation of the Newell-Whitehead equation. Math. Nachr. 1995, 176:249-263.
-
(1995)
Math. Nachr.
, vol.176
, pp. 249-263
-
-
Schneider, G.1
-
10
-
-
0039500618
-
Approximation of the Korteweg-de Vries equation by the nonlinear Schrödinger equation
-
Schneider Guido Approximation of the Korteweg-de Vries equation by the nonlinear Schrödinger equation. J. Differential Equations 1998, 147(2):333-354.
-
(1998)
J. Differential Equations
, vol.147
, Issue.2
, pp. 333-354
-
-
Schneider, G.1
-
11
-
-
0007015954
-
Justification of modulation equations for hyperbolic systems via normal forms
-
Schneider Guido Justification of modulation equations for hyperbolic systems via normal forms. NoDEA Nonlinear Differential Equations Appl. 1998, 5(1):69-82.
-
(1998)
NoDEA Nonlinear Differential Equations Appl.
, vol.5
, Issue.1
, pp. 69-82
-
-
Schneider, G.1
-
12
-
-
24144491340
-
Justification and failure of the nonlinear Schrödinger equation in case of non-trivial quadratic resonances
-
Schneider Guido Justification and failure of the nonlinear Schrödinger equation in case of non-trivial quadratic resonances. J. Differential Equations 2005, 216(2):354-386.
-
(2005)
J. Differential Equations
, vol.216
, Issue.2
, pp. 354-386
-
-
Schneider, G.1
-
13
-
-
79955757836
-
-
preprint
-
Totz Nathan, Wu Sijue preprint. arxiv:1101.0545v1.
-
-
-
Totz, N.1
Wu, S.2
-
14
-
-
67650433790
-
Almost global wellposedness of the 2-D full water wave problem
-
Wu Sijue Almost global wellposedness of the 2-D full water wave problem. Invent. Math. 2009, 177(1):45-135.
-
(2009)
Invent. Math.
, vol.177
, Issue.1
, pp. 45-135
-
-
Wu, S.1
-
15
-
-
34250447917
-
Stability of periodic waves of finite amplitude on the surface of a deep fluid
-
Zakharov V.E. Stability of periodic waves of finite amplitude on the surface of a deep fluid. Sov. Phys. J. Appl. Mech. Tech. Phys. 1968, 4:190-194.
-
(1968)
Sov. Phys. J. Appl. Mech. Tech. Phys.
, vol.4
, pp. 190-194
-
-
Zakharov, V.E.1
|