메뉴 건너뛰기




Volumn 1, Issue 1, 2010, Pages 139-159

Gevrey smoothing effect of solutions for spatially homogeneous nonlinear Boltzmann equation without angular cutoff

Author keywords

Boltzmann equation; Gevrey regularity; Non angular cutoff; Smoothing effect

Indexed keywords


EID: 79955747406     PISSN: 16629981     EISSN: 1662999X     Source Type: Journal    
DOI: 10.1007/s11868-010-0008-z     Document Type: Article
Times cited : (35)

References (16)
  • 1
    • 79953749528 scopus 로고    scopus 로고
    • A review of Boltzmann equation with singular kernels
    • Alexandre R.: A review of Boltzmann equation with singular kernels. Kinet. Relat. Models 2, 551-646 (2009).
    • (2009) Kinet. Relat. Models , vol.2 , pp. 551-646
    • Alexandre, R.1
  • 4
    • 77956094581 scopus 로고    scopus 로고
    • Regularizing effect and local existence for the non-cutoff Boltzmann equation
    • doi: 10. 1007/s00205-010-0290-1
    • Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T.: Regularizing effect and local existence for the non-cutoff Boltzmann equation, Arch. Rational Mech. Anal. (2010). doi: 10. 1007/s00205-010-0290-1.
    • (2010) Arch. Rational Mech. Anal
    • Alexandre, R.1    Morimoto, Y.2    Ukai, S.3    Xu, C.-J.4    Yang, T.5
  • 5
    • 18844411595 scopus 로고    scopus 로고
    • Littlewood Paley decomposition and regularity issues in Boltzmann equation homogeneous equations. I. Non cutoff and Maxwell cases
    • Alexandre R., Elsafadi M.: Littlewood Paley decomposition and regularity issues in Boltzmann equation homogeneous equations. I. Non cutoff and Maxwell cases. Math. Models Methods Appl. Sci. 15, 907-920 (2005).
    • (2005) Math. Models Methods Appl. Sci. , vol.15 , pp. 907-920
    • Alexandre, R.1    Elsafadi, M.2
  • 6
    • 67349205234 scopus 로고    scopus 로고
    • Littlewood Paley decomposition and regularity issues in Boltzmann homogeneous equations. II. Non cutoff and non Maxwell cases
    • Alexandre R., Elsafadi M.: Littlewood Paley decomposition and regularity issues in Boltzmann homogeneous equations. II. Non cutoff and non Maxwell cases. Discrete Contin. Dyn. Syst. Ser. A 24, 1-11 (2009).
    • (2009) Discrete Contin. Dyn. Syst. Ser. A , vol.24 , pp. 1-11
    • Alexandre, R.1    Elsafadi, M.2
  • 7
    • 67349233256 scopus 로고    scopus 로고
    • Propagation of Gevrey regularity for solutions of Boltzmann equation for Maxwellian molecules
    • Desvillettes L., Furioli G., Terraneo E.: Propagation of Gevrey regularity for solutions of Boltzmann equation for Maxwellian molecules. Trans. Am. Math. Soc. 361, 1731-1747 (2009).
    • (2009) Trans. Am. Math. Soc. , vol.361 , pp. 1731-1747
    • Desvillettes, L.1    Furioli, G.2    Terraneo, E.3
  • 8
    • 1642284756 scopus 로고    scopus 로고
    • Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff
    • Desvillettes L., Wennberg B.: Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff. Commun. Partial Differ. Equ. 29-1-2, 133-155 (2004).
    • (2004) Commun. Partial Differ. Equ. , vol.29 , Issue.1-2 , pp. 133-155
    • Desvillettes, L.1    Wennberg, B.2
  • 9
    • 0003138434 scopus 로고
    • Asymptotic theory of the Boltzmann equation II
    • J. A. Laurmann (Ed.), New York: Academic Press
    • Grad H.: Asymptotic theory of the Boltzmann equation II. In: Laurmann, J. A. (eds) Rarefied Gas Dynamics, vol 1, pp. 26-59. Academic Press, New York (1963).
    • (1963) Rarefied Gas Dynamics, Vol 1 , pp. 26-59
    • Grad, H.1
  • 10
    • 67349194487 scopus 로고    scopus 로고
    • Regularity of solutions for spatially homogeneous Boltzmann equation without Angular cutoff
    • Huo Z. H., Morimoto Y., Ukai S., Yang T.: Regularity of solutions for spatially homogeneous Boltzmann equation without Angular cutoff. Kinet. Relat. Models 1, 453-489 (2008).
    • (2008) Kinet. Relat. Models , vol.1 , pp. 453-489
    • Huo, Z.H.1    Morimoto, Y.2    Ukai, S.3    Yang, T.4
  • 11
    • 84856928347 scopus 로고    scopus 로고
    • Gevrey regularizing effect of Cauchy problem for non-cutoff homogeneous Kac's equation
    • Lekrine N., Xu C.-J.: Gevrey regularizing effect of Cauchy problem for non-cutoff homogeneous Kac's equation. Kinet. Relat. Models 2, 647-666 (2009).
    • (2009) Kinet. Relat. Models , vol.2 , pp. 647-666
    • Lekrine, N.1    Xu, C.-J.2
  • 12
    • 67349239513 scopus 로고    scopus 로고
    • Regularity of solutions to the spatially homogeneous Boltzmann equation without Angular cutoff
    • Morimoto Y., Ukai S., Xu C.-J., Yang T.: Regularity of solutions to the spatially homogeneous Boltzmann equation without Angular cutoff. Discrete Contin. Dyn. Syst. Ser. A 24, 187-212 (2009).
    • (2009) Discrete Contin. Dyn. Syst. Ser. A , vol.24 , pp. 187-212
    • Morimoto, Y.1    Ukai, S.2    Xu, C.-J.3    Yang, T.4
  • 13
    • 67349092273 scopus 로고    scopus 로고
    • Ultra-analytic effect of Cauchy problem for a class of kinetic equations
    • Morimoto Y., Xu C.-J.: Ultra-analytic effect of Cauchy problem for a class of kinetic equations. J. Differ. Equ. 247, 596-617 (2009).
    • (2009) J. Differ. Equ. , vol.247 , pp. 596-617
    • Morimoto, Y.1    Xu, C.-J.2
  • 14
    • 0003244114 scopus 로고
    • Local solutions in Gevrey classes to the nonlinear Boltzmann equation without cutoff
    • Ukai S.: Local solutions in Gevrey classes to the nonlinear Boltzmann equation without cutoff. Japan J. Appl. Math. 1(1), 141-156 (1984).
    • (1984) Japan J. Appl. Math. , vol.1 , Issue.1 , pp. 141-156
    • Ukai, S.1
  • 15
    • 77957066266 scopus 로고
    • Solutions of the Boltzmann equation, pattern and waves-qualitative analysis of nonlinear differential equations
    • In: Mimura, M., Nishida, T. (eds.), Kinokuniya-North-Holland, Tokyo
    • Ukai, S.: Solutions of the Boltzmann equation, pattern and waves-qualitative analysis of nonlinear differential equations. In: Mimura, M., Nishida, T. (eds.) Studies of Mathematics and its Applications, vol. 18, pp. 37-96. Kinokuniya-North-Holland, Tokyo (1986).
    • (1986) Studies of Mathematics and its Applications , vol.18 , pp. 37-96
    • Ukai, S.1
  • 16
    • 0032338727 scopus 로고    scopus 로고
    • On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations
    • Villani C.: On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Ration. Mech. Anal. 143, 273-307 (1998).
    • (1998) Arch. Ration. Mech. Anal. , vol.143 , pp. 273-307
    • Villani, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.