메뉴 건너뛰기




Volumn 115, Issue 8, 2011, Pages 1121-1133

Unsupervised texture-based image segmentation through pattern discovery

Author keywords

Gabor filters; Multi sized evaluation windows; Supervised pixel based texture classification; Unsupervised texture segmentation

Indexed keywords

FEATURE VECTORS; GABOR FILTER; GABOR FILTER BANKS; IMAGE PIXELS; IMAGE-BASED; MULTI-CHANNEL; MULTI-SIZED EVALUATION WINDOWS; PATTERN DISCOVERY; PIXEL CLASSIFICATION; REAL IMAGES; SUPERVISED PIXEL-BASED TEXTURE CLASSIFICATION; TEXTURE PATTERNS; TEXTURE SEGMENTATION; TEXTURED IMAGES; TOP-DOWN APPROACH; UNSUPERVISED SEGMENTATION; UNSUPERVISED TEXTURE SEGMENTATION;

EID: 79955723503     PISSN: 10773142     EISSN: 1090235X     Source Type: Journal    
DOI: 10.1016/j.cviu.2011.03.008     Document Type: Article
Times cited : (20)

References (29)
  • 2
    • 0032663328 scopus 로고    scopus 로고
    • Filtering for texture classification: A comparative study
    • T. Randen, and J.H. Husøy Filtering for texture classification: a comparative study IEEE Trans. Pattern Anal. 21 1999 291 310
    • (1999) IEEE Trans. Pattern Anal. , vol.21 , pp. 291-310
    • Randen, T.1    Husøy, J.H.2
  • 3
    • 33845450344 scopus 로고    scopus 로고
    • Pixel classification by divergence-based integration of multiple texture methods and its application to fabric defect detection
    • M.A. Garcia, and D. Puig Pixel classification by divergence-based integration of multiple texture methods and its application to fabric defect detection Lect. Notes Comput. Sci. 2781 2003 132 139
    • (2003) Lect. Notes Comput. Sci. , vol.2781 , pp. 132-139
    • Garcia, M.A.1    Puig, D.2
  • 4
    • 0033101072 scopus 로고    scopus 로고
    • Unsupervised texture segmentation using feature distributions
    • T. Ojala, and M. Pietikäinen Unsupervised texture segmentation using feature distributions Pattern Recogn. 32 1999 477 486
    • (1999) Pattern Recogn. , vol.32 , pp. 477-486
    • Ojala, T.1    Pietikäinen, M.2
  • 5
    • 79958126908 scopus 로고    scopus 로고
    • Spectral unmixing of mixed pixels for texture boundary refinement
    • K.P. Camilleri, M. Petrou, Spectral unmixing of mixed pixels for texture boundary refinement, in: Proceedings of the ICPR, 2000, pp. 1096-1099.
    • (2000) Proceedings of the ICPR , pp. 1096-1099
    • Camilleri, K.P.1    Petrou, M.2
  • 7
    • 0034442571 scopus 로고    scopus 로고
    • Two-stage texture segmentation using complementary features
    • J. Luo, A.E. Savakis, Two-stage texture segmentation using complementary features, in: Proceedings of the IEEE ICIP, 2000, pp. 564-567.
    • (2000) Proceedings of the IEEE ICIP , pp. 564-567
    • Luo, J.1    Savakis, A.E.2
  • 8
    • 33845395148 scopus 로고    scopus 로고
    • Texture classification and segmentation using wavelet packet frame and Gaussian mixture model
    • DOI 10.1016/j.patcog.2006.09.012, PII S0031320306003888
    • S.C. Kim, and T.J. Kang Texture classification and segmentation using wavelet packet frame and Gaussian mixture model Pattern Recogn. 40 2007 1207 1221 (Pubitemid 44894483)
    • (2007) Pattern Recognition , vol.40 , Issue.4 , pp. 1207-1221
    • Kim, S.C.1    Kang, T.J.2
  • 10
    • 33746817927 scopus 로고    scopus 로고
    • Automatic texture feature selection for image pixel classification
    • DOI 10.1016/j.patcog.2006.05.016, PII S0031320306002366
    • D. Puig, and M.A. Garcia Automatic texture feature selection for image pixel classification Pattern Recogn. 39 2006 1996 2009 (Pubitemid 44175465)
    • (2006) Pattern Recognition , vol.39 , Issue.11 , pp. 1996-2009
    • Puig, D.1    Angel Garcia, M.2
  • 11
    • 50549085761 scopus 로고    scopus 로고
    • Efficient distance-based per-pixel texture classification with Gabor wavelet filters
    • J. Melendez, M.A. Garcia, and D. Puig Efficient distance-based per-pixel texture classification with Gabor wavelet filters Pattern Anal. Appl. 11 2008 365 372
    • (2008) Pattern Anal. Appl. , vol.11 , pp. 365-372
    • Melendez, J.1    Garcia, M.A.2    Puig, D.3
  • 14
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • J. Shi, and J. Malik Normalized cuts and image segmentation IEEE Trans. Pattern Anal. 22 2000 888 905
    • (2000) IEEE Trans. Pattern Anal. , vol.22 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 20
    • 0031348906 scopus 로고    scopus 로고
    • Measuring texture classification algorithms
    • PII S0167865597001323
    • G. Smith, and I. Burns Measuring texture classification algorithms Pattern Recogn. Lett. 18 1997 1495 1501 (Pubitemid 127434846)
    • (1997) Pattern Recognition Letters , vol.18 , Issue.14 , pp. 1495-1501
    • Smith, G.1    Burns, I.2
  • 22
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • D. Martin et al., A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, in: Proceedings of the IEEE ICCV, 2001, pp. II:416-423.
    • (2001) Proceedings of the IEEE ICCV
    • Martin, D.1
  • 23
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • W.M. Rand Objective criteria for the evaluation of clustering methods J. Am. Stat. Assoc. 66 1971 846 850
    • (1971) J. Am. Stat. Assoc. , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 24
    • 0034246174 scopus 로고    scopus 로고
    • EdgeFlow: A technique for boundary detection and image segmentation
    • W.-Y. Ma, and B.S. Manjunath EdgeFlow: a technique for boundary detection and image segmentation IEEE Trans. Image Process. 9 2000 1375 1388
    • (2000) IEEE Trans. Image Process. , vol.9 , pp. 1375-1388
    • Ma, W.-Y.1    Manjunath, B.S.2
  • 25
    • 0345414073 scopus 로고    scopus 로고
    • Mean shift based clustering in high dimensions: A texture classification example
    • B. Georgescu, I. Shimshoni, P. Meer, Mean shift based clustering in high dimensions: a texture classification example, in: Proceedings of the IEEE ICCV, 2003, pp. 456-463.
    • (2003) Proceedings of the IEEE ICCV , pp. 456-463
    • Georgescu, B.1    Shimshoni, I.2    Meer, P.3
  • 26
    • 33644859270 scopus 로고    scopus 로고
    • Texture image segmentation using combined features from spatial and spectral distribution
    • DOI 10.1016/j.patrec.2005.11.002, PII S0167865505003508
    • K. Muneeswaran Texture image segmentation using combined features from spatial and spectral distribution Pattern Recogn. Lett. 27 2006 755 764 (Pubitemid 43374858)
    • (2006) Pattern Recognition Letters , vol.27 , Issue.7 , pp. 755-764
    • Muneeswaran, K.1    Ganesan, L.2    Arumugam, S.3    Ruba Soundar, K.4
  • 27
    • 41949137770 scopus 로고    scopus 로고
    • Unsupervised segmentation of natural images via lossy data compression
    • DOI 10.1016/j.cviu.2007.07.005, PII S1077314207001300
    • A.Y. Yang Unsupervised segmentation of natural images via lossy data compression Comput. Vis. Image Und. 110 2008 212 225 (Pubitemid 351509774)
    • (2008) Computer Vision and Image Understanding , vol.110 , Issue.2 , pp. 212-225
    • Yang, A.Y.1    Wright, J.2    Ma, Y.3    Sastry, S.S.4
  • 28
    • 84927751020 scopus 로고    scopus 로고
    • From contours to regions: An empirical evaluation
    • P. Arbelaez et al., From contours to regions: an empirical evaluation, in Proceedings of the IEEE CVPR, 2009, pp. 2294-2301.
    • (2009) Proceedings of the IEEE CVPR , pp. 2294-2301
    • Arbelaez, P.1
  • 29
    • 79953037304 scopus 로고    scopus 로고
    • Natural image segmentation with adaptive texture and boundary encoding
    • S. Rao et al., Natural image segmentation with adaptive texture and boundary encoding, in: Proceedings of the ACCV, 2009.
    • (2009) Proceedings of the ACCV
    • Rao, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.