-
1
-
-
84972498411
-
Every planar map is four colorable. Part I. Discharging
-
[AH77] K. Appel and W. Haken. Every planar map is four colorable. Part I. Discharging. Illinois Journal of Mathematics, 21:429-490, 1977.
-
(1977)
Illinois Journal of Mathematics
, vol.21
, pp. 429-490
-
-
Appel, K.1
Haken, W.2
-
2
-
-
84972500815
-
Every planar map is four colorable. Part II. Reducibility
-
[AHK77] K. Appel, W. Hakenn, and J. Koch. Every planar map is four colorable. Part ii. Reducibility. Illinois Journal of Mathematics, 21:491-597, 1977.
-
(1977)
Illinois Journal of Mathematics
, vol.21
, pp. 491-597
-
-
Appel, K.1
Hakenn, W.2
Koch, J.3
-
3
-
-
0032058198
-
Proof verification and the hardness of approximation problems
-
ACM
-
[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the hardness of approximation problems. Journal of the ACM, 45:501-555, 1998.
-
(1998)
Journal of the
, vol.45
, pp. 501-555
-
-
Arora, S.1
Lund, C.2
Motwani, R.3
Sudan, M.4
Szegedy, M.5
-
4
-
-
84968815199
-
-
[ANS85] ANSI/IEEE. Standara 754-1985 for binary floatingpoint arithmetic. 1985. Reprinted in ACM SIGPLAN Notices, 22(2):9-25, 1987.
-
[ANS85] ANSI/IEEE. Standara 754-1985 for binary floatingpoint arithmetic. 1985. Reprinted in ACM SIGPLAN Notices, 22(2):9-25, 1987.
-
-
-
-
5
-
-
0031651077
-
Probabilistic checking of proofs: A new characterization of NP
-
[AS98] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP. Journal of the ACM, 45:70-122, 1998.
-
(1998)
Journal of the ACM
, vol.45
, pp. 70-122
-
-
Arora, S.1
Safra, S.2
-
8
-
-
0542423500
-
Free bits, PCPs, and nonapproximability-towards tight results
-
[BGS98] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs, and nonapproximability-towards tight results. SIAM Journal on Computing, 27:804-915, 1998.
-
(1998)
SIAM Journal on Computing
, vol.27
, pp. 804-915
-
-
Bellare, M.1
Goldreich, O.2
Sudan, M.3
-
10
-
-
85027123851
-
Approximating the value of two prover proof systems, with applications to MAX-IS at and MAX-DICUT
-
Tel Aviv, Israel
-
[FG95] U. Feige and M.X. Goemans. Approximating the value of two prover proof systems, with applications to MAX-IS AT and MAX-DICUT. In Proceedings of the 3nd Israel Symposium on Theory and Computing Systems, Tel Aviv, Israel, pages 182-189, 1995.
-
(1995)
Proceedings of the 3nd Israel Symposium on Theory and Computing Systems
, pp. 182-189
-
-
Feige, U.1
Goemans, M.X.2
-
11
-
-
0030100766
-
Interactive proofs and the hardness of approximating cliques
-
[FGL+96] U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Interactive proofs and the hardness of approximating cliques. Journal of the ACM, 43:268-292, 1996.
-
(1996)
Journal of the ACM
, vol.43
, pp. 268-292
-
-
Feige, U.1
Goldwasser, S.2
Lovasz, L.3
Safra, S.4
Szegedy, M.5
-
12
-
-
84879539747
-
The RPR2 rounding technique for semidefinite programs
-
Crete, Greece
-
[FL01 ] U. Feige and M. Langberg. The RPR2 rounding technique for semidefinite programs. In Proceedings of the 28th International Colloquium on Automata, Languages and Programming, Crete, Greece, pages 213-224, 2001.
-
(2001)
Proceedings of the 28th International Colloquium on Automata, Languages and Programming
, pp. 213-224
-
-
Feige, U.1
Langberg, M.2
-
14
-
-
0026122066
-
What every computer scientist should know about floating-point arithmetic
-
[Gol91] D. Goldberg. What every computer scientist should know about floating-point arithmetic. ACM Computing Surveys, 23:5-48, 1991.
-
(1991)
ACM Computing Surveys
, vol.23
, pp. 5-48
-
-
Goldberg, D.1
-
15
-
-
84893574327
-
Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming
-
[GW95] M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM, 42:1115-1145, 1995.
-
(1995)
Journal of the ACM
, vol.42
, pp. 1115-1145
-
-
Goemans, M.X.1
Williamson, D.P.2
-
18
-
-
0003624420
-
-
Mathematics arXiv
-
[Hal98] T.C. Hales. The Kepler conjecture, 1998. Mathematics arXiv http://arxiv.org/abs/math.MG/9811078.
-
(1998)
The Kepler Conjecture
-
-
Hales, T.C.1
-
22
-
-
0030671781
-
Some optimal inapproximability results
-
El Paso, Texas. Full version available as E-CCC Report number TR97-037fv
-
[Hls97] J. Hastad. Some optimal inapproximability results. In Proceedings of the 29th Annual ACM Symposium on Theory of Computing, El Paso, Texas, pages 1-10, 1997. Full version available as E-CCC Report number TR97-037.
-
(1997)
Proceedings of the 29th Annual ACM Symposium on Theory of Computing
, pp. 1-10
-
-
Hastad, J.1
-
23
-
-
84968881269
-
-
[Hau98] J. Hauser. SoftFloat. http://www.es.berkeley.edu/-jhauser/arithmetic/softfloat.html 1998.
-
(1998)
SoftFloat
-
-
Hauser, J.1
-
34
-
-
0001226672
-
A parallel repetition theorem
-
[Raz98] R. Raz. A parallel repetition theorem. SIAM Journal on Computing, 27:763-803, 1998.
-
(1998)
SIAM Journal on Computing
, vol.27
, pp. 763-803
-
-
Raz, R.1
-
35
-
-
0031146074
-
The four-colour theorem
-
[RSST97] N. Robertson, D. Sanders, P. Seymour, and R. Thomas. The four-colour theorem. Journal of Combinatorial Theory, Series B, 70(1):2-44, 1997.
-
(1997)
Journal of Combinatorial Theory, Series B
, vol.70
, Issue.1
, pp. 2-44
-
-
Robertson, N.1
Sanders, D.2
Seymour, P.3
Thomas, R.4
-
36
-
-
0013491673
-
On the multiple integral jndxdy...dz, whose limits are pi -Aix + biy + ... + h-z > 0, p2 > 0, ., pn > 0, andx2+y2+.. .+z2 < 1
-
Continued in 3 1860 54-68 and pp. 97-108
-
[Sch58] L. Schlafli. On the multiple integral jndxdy...dz, whose limits are pi -aix + biy + ... + h-z > 0, p2 > 0, ... , pn > 0, andx2+y2+.. .+z2 < 1. Quarterly Journal of Mathematics (Oxford), 2:269-300, 1858. Continued in 3. 1860 54-68 and pp. 97-108
-
(1858)
Quarterly Journal of Mathematics (Oxford)
, vol.2
, pp. 269-300
-
-
Schlafli, L.1
-
38
-
-
0032131637
-
A gentle introduction to Numerica
-
[Van98] P. Van Hentenryck. A gentle introduction to Numerica. Artificial Intelligence, 103:209-235, 1998.
-
(1998)
Artificial Intelligence
, vol.103
, pp. 209-235
-
-
Van Hentenryck, P.1
-
40
-
-
0004149831
-
-
Cambridge University Press, fourth edition
-
[W6199] S. Wolfram. The Mathematica book. Cambridge University Press, fourth edition, 1999.
-
(1999)
The Mathematica Book
-
-
Wolfram, S.1
-
41
-
-
0032266121
-
Approximation algorithms for constraint satisfaction problems involving at most three variables per constraint
-
San Francisco, California
-
[Zwi98] U. Zwick. Approximation algorithms for constraint satisfaction problems involving at most three variables per constraint. In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, California, pages 201-210, 1998.
-
(1998)
Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms
, pp. 201-210
-
-
Zwick, U.1
-
42
-
-
0032631766
-
Outward rotations: A tool for rounding solutions of semidefinite programming relaxations, with applications to max cut and other problems
-
Atlanta, Georgia
-
[Zwi991 U. Zwick. Outward rotations: a tool for rounding solutions of semidefinite programming relaxations, with applications to max cut and other problems. In Proceedings of the 31th Annual ACM Symposium on Theory of Computing, Atlanta, Georgia, pages 679-687, 1999.
-
(1999)
Proceedings of the 31th Annual ACM Symposium on Theory of Computing
, pp. 679-687
-
-
Zwick, U.1
|