메뉴 건너뛰기




Volumn 80, Issue 275, 2011, Pages 1585-1600

Differentiation of matrix functionals using triangular factorization

Author keywords

Algorithmic differentiation; Covariance selection; Differentiation matrix functionals; Log det relationships; REML; Robust generalized cross validation; Smoothing splines; Triangular factorization

Indexed keywords


EID: 79955653232     PISSN: 00255718     EISSN: None     Source Type: Journal    
DOI: 10.1090/S0025-5718-2011-02451-8     Document Type: Article
Times cited : (3)

References (25)
  • 1
    • 0033484662 scopus 로고    scopus 로고
    • Monte Carlo estimates of the log determinant of large sparse matrices
    • R. P. Barry and R. K. Pace. Monte Carlo estimates of the log determinant of large sparse matrices. J. Linear Algebra Appl., 28:41-54, 1999.
    • (1999) J. Linear Algebra Appl. , vol.28 , pp. 41-54
    • Barry, R.P.1    Pace, R.K.2
  • 3
    • 0001038826 scopus 로고
    • Covariance selection
    • A. Dempster. Covariance selection. Biometrics, 28:57-175, 1972.
    • (1972) Biometrics , vol.28 , pp. 57-175
    • Dempster, A.1
  • 5
    • 0016486861 scopus 로고
    • On computing certain elements of the inverse of a sparse matrix
    • A. M. Erisman and W. F. Tinney. On computing certain elements of the inverse of a sparse matrix. Communications ACM, 18:177-179, 1975.
    • (1975) Communications ACM , vol.18 , pp. 177-179
    • Erisman, A.M.1    Tinney, W.F.2
  • 6
    • 0024630993 scopus 로고
    • The evolution of the minimum degree ordering algorithm
    • A. George and J. Li. The evolution of the minimum degree ordering algorithm. SIAM Review, 31:1-19, 1989.
    • (1989) SIAM Review , vol.31 , pp. 1-19
    • George, A.1    Li, J.2
  • 7
    • 0005943638 scopus 로고
    • Large-scale geodetic least-squares adjustment by dissection and orthogonal decomposition
    • G. H. Golub and R. H. Plemmons. Large-scale geodetic least-squares adjustment by dissection and orthogonal decomposition. Lin. Algebra Appl., 34:3-27, 1980.
    • (1980) Lin. Algebra Appl. , vol.34 , pp. 3-27
    • Golub, G.H.1    Plemmons, R.H.2
  • 11
    • 0002970891 scopus 로고
    • Smoothing noisy data with spline functions
    • M. F. Hutchinson and F. R. de Hoog. Smoothing noisy data with spline functions. Numer. Math., 47:99-106, 1985.
    • (1985) Numer. Math. , vol.47 , pp. 99-106
    • Hutchinson, M.F.1    de Hoog, F.R.2
  • 12
    • 43949158530 scopus 로고
    • Matrix inversion algorithms by means of automatic differentiation
    • K. Kubota. Matrix inversion algorithms by means of automatic differentiation. Appl. Math. Lett., 7:19-22, 1994.
    • (1994) Appl. Math. Lett. , vol.7 , pp. 19-22
    • Kubota, K.1
  • 13
  • 14
    • 33749009570 scopus 로고    scopus 로고
    • Robust generalized cross-validation for choosing the regularization parameter
    • M. A. Lukas. Robust generalized cross-validation for choosing the regularization parameter. Inverse Problems, 22:1883-1902, 2006.
    • (2006) Inverse Problems , vol.22 , pp. 1883-1902
    • Lukas, M.A.1
  • 15
    • 77955430776 scopus 로고    scopus 로고
    • Efficient algorithms for robust generalized cross-validation spline smoothing
    • M. A. Lukas, F. R. de Hoog, and R. S. Anderssen. Efficient algorithms for robust generalized cross-validation spline smoothing, J. Comput. Appl. Math., 235:102-107, 2010.
    • (2010) J. Comput. Appl. Math. , vol.235 , pp. 102-107
    • Lukas, M.A.1    de Hoog, F.R.2    Anderssen, R.S.3
  • 16
    • 0000444373 scopus 로고
    • The elimination form of the inverse and its application to linear programming
    • H. M. Markowitz. The elimination form of the inverse and its application to linear programming. Management Sci., 3:255-269, 1957.
    • (1957) Management Sci. , vol.3 , pp. 255-269
    • Markowitz, H.M.1
  • 17
    • 0034538773 scopus 로고    scopus 로고
    • A survey of truncated-Newton methods
    • S. G. Nash. A survey of truncated-Newton methods. J. Comp. Appl. Math., 124:45-59, 2000.
    • (2000) J. Comp. Appl. Math. , vol.124 , pp. 45-59
    • Nash, S.G.1
  • 19
    • 79955652947 scopus 로고    scopus 로고
    • High-dimensional covariance estimation by minimizing (1-penalized log-determinant divergence
    • P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu. High-dimensional covariance estimation by minimizing (1-penalized log-determinant divergence. IEEE, 2008.
    • (2008) IEEE
    • Ravikumar, P.1    Wainwright, M.J.2    Raskutti, G.3    Yu, B.4
  • 20
    • 0004183064 scopus 로고
    • Chapman and Hall, London
    • S. D. Silvey. Optimal Design. Chapman and Hall, London, 1980. MR606742 (82d:62123).
    • (1980) Optimal Design
    • Silvey, S.D.1
  • 21
    • 84890895990 scopus 로고
    • Differentiation of the Cholesky algorithm
    • S. P. Smith. Differentiation of the Cholesky algorithm. J. Comp. Graph. Stat., 4:134-147, 1995.
    • (1995) J. Comp. Graph. Stat. , vol.4 , pp. 134-147
    • Smith, S.P.1
  • 23
    • 0000939344 scopus 로고
    • Bayesian confidence intervals for the cross-validated smoothing spline
    • G. Wahba. Bayesian confidence intervals for the cross-validated smoothing spline. J.R. Stat. Soc., Ser. B, 45:133-150, 1983.
    • (1983) J.R. Stat. Soc., Ser. B , vol.45 , pp. 133-150
    • Wahba, G.1
  • 24
    • 0013290995 scopus 로고
    • Compact computation of the inverse of a matrix
    • F. V. Waugh and P. S. Dwyer. Compact computation of the inverse of a matrix. Annals Math. Stat., 16:259-271, 1945.
    • (1945) Annals Math. Stat. , vol.16 , pp. 259-271
    • Waugh, F.V.1    Dwyer, P.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.