-
1
-
-
0004245694
-
-
reprint of the 1972 edition, Dover Publications, New York
-
Abramowitz M., Stegun I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables 1992, reprint of the 1972 edition, Dover Publications, New York.
-
(1992)
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
-
-
Abramowitz, M.1
Stegun, I.A.2
-
2
-
-
84968521876
-
Symmetric decreasing rearrangement is sometimes continuous
-
Almgren F.J., Lieb E.H. Symmetric decreasing rearrangement is sometimes continuous. J. Amer. Math. Soc. 1989, 2:683-773.
-
(1989)
J. Amer. Math. Soc.
, vol.2
, pp. 683-773
-
-
Almgren, F.J.1
Lieb, E.H.2
-
3
-
-
78751574089
-
-
Gamma-convergence of nonlocal perimeter functionals, preprint.
-
L. Ambrosio, G. De Philippis, L. Martinazzi, Gamma-convergence of nonlocal perimeter functionals, preprint, 2010.
-
(2010)
-
-
Ambrosio, L.1
De Philippis, G.2
Martinazzi, L.3
-
5
-
-
0002640998
-
Another look at Sobolev spaces
-
IOS Press, J.L. Menaldi, E. Rofman, A. Sulem (Eds.)
-
Bourgain J., Brezis H., Mironescu P. Another look at Sobolev spaces. Optimal Control and Partial Differential Equations, a volume in honor of A. Bensoussans's 60th birthday 2001, 439-455. IOS Press. J.L. Menaldi, E. Rofman, A. Sulem (Eds.).
-
(2001)
Optimal Control and Partial Differential Equations, a volume in honor of A. Bensoussans's 60th birthday
, pp. 439-455
-
-
Bourgain, J.1
Brezis, H.2
Mironescu, P.3
-
6
-
-
0013106910
-
Weighted Dirichlet-type inequalities for Steiner symmetrization
-
Brock F. Weighted Dirichlet-type inequalities for Steiner symmetrization. Calc. Var. Partial Differential Equations 1999, 8:15-25.
-
(1999)
Calc. Var. Partial Differential Equations
, vol.8
, pp. 15-25
-
-
Brock, F.1
-
9
-
-
79955630636
-
-
Uniform estimates and limiting arguments for nonlocal minimal surfaces, preprint
-
L. Caffarelli, E. Valdinoci, Uniform estimates and limiting arguments for nonlocal minimal surfaces, preprint, 2009.
-
(2009)
-
-
Caffarelli, L.1
Valdinoci, E.2
-
10
-
-
0036027235
-
Functions of bounded variation and rearrangements
-
Cianchi A., Fusco N. Functions of bounded variation and rearrangements. Arch. Ration. Mech. Anal. 2002, 165:1-40.
-
(2002)
Arch. Ration. Mech. Anal.
, vol.165
, pp. 1-40
-
-
Cianchi, A.1
Fusco, N.2
-
11
-
-
74249085442
-
The sharp Sobolev inequality in quantitative form
-
Cianchi A., Fusco N., Maggi F., Pratelli A. The sharp Sobolev inequality in quantitative form. J. Eur. Math. Soc. (JEMS) 2009, 11:1105-1139.
-
(2009)
J. Eur. Math. Soc. (JEMS)
, vol.11
, pp. 1105-1139
-
-
Cianchi, A.1
Fusco, N.2
Maggi, F.3
Pratelli, A.4
-
12
-
-
79955593422
-
-
A selection principle for the sharp quantitative isoperimetric inequality, preprint.
-
M. Cicalese, G. Leonardi, A selection principle for the sharp quantitative isoperimetric inequality, preprint, 2010.
-
(2010)
-
-
Cicalese, M.1
Leonardi, G.2
-
13
-
-
0036978827
-
On an open question about functions of bounded variation
-
Dávila J. On an open question about functions of bounded variation. Calc. Var. Partial Differential Equations 2002, 15:519-527.
-
(2002)
Calc. Var. Partial Differential Equations
, vol.15
, pp. 519-527
-
-
Dávila, J.1
-
14
-
-
77955309823
-
A mass transportation approach to quantitative isoperimetric inequalities
-
Figalli A., Maggi F., Pratelli A. A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. 2010, 182:167-211.
-
(2010)
Invent. Math.
, vol.182
, pp. 167-211
-
-
Figalli, A.1
Maggi, F.2
Pratelli, A.3
-
15
-
-
55349101942
-
Hardy-Lieb-Thiring inequalities for fractional Schrödinger operators
-
Frank R.L., Lieb E.H., Seiringer R. Hardy-Lieb-Thiring inequalities for fractional Schrödinger operators. J. Amer. Math. Soc. 2008, 21:925-950.
-
(2008)
J. Amer. Math. Soc.
, vol.21
, pp. 925-950
-
-
Frank, R.L.1
Lieb, E.H.2
Seiringer, R.3
-
16
-
-
55549087886
-
Non-linear ground state representations and sharp Hardy inequalities
-
Frank R.L., Seiringer R. Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 2008, 255:3407-3430.
-
(2008)
J. Funct. Anal.
, vol.255
, pp. 3407-3430
-
-
Frank, R.L.1
Seiringer, R.2
-
17
-
-
70350034330
-
The sharp quantitative isoperimetric inequality
-
Fusco N., Maggi F., Pratelli A. The sharp quantitative isoperimetric inequality. Ann. of Math. 2008, 168:941-980.
-
(2008)
Ann. of Math.
, vol.168
, pp. 941-980
-
-
Fusco, N.1
Maggi, F.2
Pratelli, A.3
-
18
-
-
85030707196
-
The concentration-compactness principle in the calculus of variations. The locally compact case. I
-
Lions P.L. The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1984, 1:109-145.
-
(1984)
Ann. Inst. H. Poincaré Anal. Non Linéaire
, vol.1
, pp. 109-145
-
-
Lions, P.L.1
-
19
-
-
46749140347
-
Some methods for studying stability in isoperimetric type problems
-
Maggi F. Some methods for studying stability in isoperimetric type problems. Bull. Amer. Math. Soc. 2008, 45:367-408.
-
(2008)
Bull. Amer. Math. Soc.
, vol.45
, pp. 367-408
-
-
Maggi, F.1
-
20
-
-
14644414500
-
On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces
-
Erratum:
-
Maz'ya V., Shaposhnikova T. On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces. J. Funct. Anal.. J. Funct. Anal. 2003, 201:298-300. Erratum:.
-
(2003)
J. Funct. Anal.. J. Funct. Anal.
, vol.201
, pp. 298-300
-
-
Maz'ya, V.1
Shaposhnikova, T.2
-
21
-
-
1142288658
-
A new approach to Sobolev spaces and connections to g{cyrillic}-convergence
-
Ponce A.C. A new approach to Sobolev spaces and connections to g{cyrillic}-convergence. Calc. Var. Partial Differential Equations 2004, 19:229-255.
-
(2004)
Calc. Var. Partial Differential Equations
, vol.19
, pp. 229-255
-
-
Ponce, A.C.1
-
22
-
-
0039080816
-
Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations
-
Walter de Gruyter & Co., Berlin
-
Runst T., Sickel W. Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. de Gruyter Ser. Nonlinear Anal. Appl. 1996, vol. 3. Walter de Gruyter & Co., Berlin.
-
(1996)
de Gruyter Ser. Nonlinear Anal. Appl.
, vol.3
-
-
Runst, T.1
Sickel, W.2
|