메뉴 건너뛰기




Volumn , Issue , 2010, Pages

Comparative analysis of training strategies for neural network-based spectral unmixing of laboratory-simulated forest hyperspectral scenes

Author keywords

[No Author keywords available]

Indexed keywords

CANOPY MODEL; COMPARATIVE ANALYSIS; HYPERSPECTRAL; HYPERSPECTRAL DATA; LINEAR MIXTURE MODELS; MULTILAYER PERCEPTRON NEURAL NETWORKS; NONLINEAR MIXTURE MODELING; PRIORI INFORMATION; SPECTRAL UNMIXING; TRAINING SAMPLE; TRAINING STRATEGY;

EID: 79955528988     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/PRRS.2010.5742802     Document Type: Conference Paper
Times cited : (1)

References (15)
  • 1
    • 0001395470 scopus 로고
    • Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 site
    • J. B. Adams, M. O. Smith, and P. E. Johnson. Spectral mixture modeling: a new analysis of rock and soil types at the Viking Lander 1 site. Journal of Geophysical Research, 91:8098-8112, 1986.
    • (1986) Journal of Geophysical Research , vol.91 , pp. 8098-8112
    • Adams, J.B.1    Smith, M.O.2    Johnson, P.E.3
  • 2
    • 0035330750 scopus 로고    scopus 로고
    • Comparison of the multilayer perceptron with neuro-fuzzy techniques in the estimation of cover class mixture in remotely sensed data
    • DOI 10.1109/36.921417, PII S0196289201040189
    • A. Baraldi, E. Binaghi, P. Blonda, P. A. Brivio, and P. Rampini. Comparison of the multilayer perceptron with neuro-fuzzy techniques in the estimation of cover class mixture in remotely sensed data. IEEE Transactions on Geoscience and Remote Sensing, 39:994-1005, 2001. (Pubitemid 32534345)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.5 , pp. 994-1005
    • Baraldi, A.1    Binaghi, E.2    Blonda, P.3    Brivio, P.A.4    Rampini, A.5
  • 5
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    • C.-I. Chang and Q. Du. Estimation of number of spectrally distinct signal sources in hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 42(3):608-619, 2004.
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , Issue.3 , pp. 608-619
    • Chang, C.-I.1    Du, Q.2
  • 6
    • 0034261087 scopus 로고    scopus 로고
    • A snapshot of canopy reflectance models and a universal model for the radiation regime
    • N. S. Goel and R. L. Thompson. A snapshot of canopy reflectance models and a universal model for the radiation regime. Remote Sensing Reviews, 18:197-225, 2000. (Pubitemid 32324918)
    • (2000) Remote Sensing Reviews , vol.18 , Issue.2-4 , pp. 197-225
    • Goel, N.S.1    Thompson, R.L.2
  • 7
    • 0021892045 scopus 로고
    • Imaging spectrometry for Earth remote sensing
    • A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock. Imaging spectrometry for Earth remote sensing. Science, 228:1147-1153, 1985.
    • (1985) Science , vol.228 , pp. 1147-1153
    • Goetz, A.F.H.1    Vane, G.2    Solomon, J.E.3    Rock, B.N.4
  • 8
    • 0028467206 scopus 로고    scopus 로고
    • Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection
    • J. C. Harsanyi and C.-I. Chang. Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection. IEEE Transactions on Geoscience and Remote Sensing, 32(4):779-785.
    • IEEE Transactions on Geoscience and Remote Sensing , vol.32 , Issue.4 , pp. 779-785
    • Harsanyi, J.C.1    Chang, C.-I.2
  • 9
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • DOI 10.1109/36.911111, PII S0196289201020861
    • D. Heinz and C.-I. Chang. Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 39:529-545, 2001. (Pubitemid 32400422)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2
  • 10
    • 0036401420 scopus 로고    scopus 로고
    • Investigation of linear spectral mixtures of the reflectance spectra using laboratory simulated forest scenes
    • B. Hu, J. R. Miller, J. Wang, and N. S. Goel. Investigation of linear spectral mixtures of the reflectance spectra using laboratory simulated forest scenes. Proc. IEEE Intl. Geosci. Remote Sens. Symp., 3:1535-1537, 2002. (Pubitemid 35228768)
    • (2002) International Geoscience and Remote Sensing Symposium (IGARSS) , vol.3 , pp. 1535-1537
    • Hu, B.1    Miller, J.R.2    Wang, J.3    Goel, N.S.4
  • 11
    • 39049103365 scopus 로고    scopus 로고
    • Comparison of non-linear mixture models
    • W. Liu and E. Y. Wu. Comparison of non-linear mixture models. Remote Sensing of Environment, 18:1976- 2003, 2004.
    • (2004) Remote Sensing of Environment , vol.18 , pp. 1976-2003
    • Liu, W.1    Wu, E.Y.2
  • 13
    • 12144289543 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza. A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 42(3):650-663, 2004.
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , Issue.3 , pp. 650-663
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 14
    • 77951207013 scopus 로고    scopus 로고
    • Spectral mixture analysis of hyperspectral scenes using intelligently selected training samples
    • doi: 10.1109/LGRS.2009.2036139
    • J. Plaza and A. Plaza. Spectral mixture analysis of hyperspectral scenes using intelligently selected training samples. IEEE Geoscience and Remote Sensing Letters, 7, 2010, doi: 10.1109/LGRS.2009.2036139.
    • (2010) IEEE Geoscience and Remote Sensing Letters , vol.7
    • Plaza, J.1    Plaza, A.2
  • 15
    • 67649398795 scopus 로고    scopus 로고
    • On the use of small training sets for neural network-based characterization ofmixed pixels in remotely sensed hyperspectral images
    • J. Plaza, A. Plaza, R. Perez, and P.Martinez. On the use of small training sets for neural network-based characterization ofmixed pixels in remotely sensed hyperspectral images. Pattern Recognition, 42:3032-3045, 2009.
    • (2009) Pattern Recognition , vol.42 , pp. 3032-3045
    • Plaza, J.1    Plaza, A.2    Perez, R.3    Martinez, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.