메뉴 건너뛰기




Volumn 12, Issue 4, 2011, Pages 2151-2162

Global dynamics of a predatorprey model with time delay and stage structure for the prey

Author keywords

Global stability; Hopf bifurcation; LaSalle invariant principle; Stage structure; Time delay

Indexed keywords

CHARACTERISTIC EQUATION; FUNCTIONAL RESPONSE; GLOBAL DYNAMICS; GLOBAL STABILITY; GLOBALLY ASYMPTOTICALLY STABLE; INFINITE-DIMENSIONAL SYSTEM; LASALLE INVARIANT PRINCIPLE; LOCAL STABILITY; LYAPUNOV FUNCTIONALS; NUMERICAL SIMULATION; PREDATOR - PREY SYSTEM; PREDATOR-PREY MODELS; STAGE STRUCTURE; SUFFICIENT CONDITIONS; THEORETICAL RESULT; TRIVIAL EQUILIBRIUM;

EID: 79955523363     PISSN: 14681218     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.nonrwa.2010.12.029     Document Type: Article
Times cited : (43)

References (21)
  • 1
    • 0002366911 scopus 로고
    • The functional response of predator to prey density and its role in mimicry and population regulation
    • C.S. Holling The functional response of predator to prey density and its role in mimicry and population regulation Mem. Ent. Sec. Can. 45 1965 1 60
    • (1965) Mem. Ent. Sec. Can. , vol.45 , pp. 1-60
    • Holling, C.S.1
  • 2
    • 0011893594 scopus 로고
    • The existence and uniqueness of limit cycles in differential equations modelling the predatorprey interaction
    • L. Chen, and Z. Jing The existence and uniqueness of limit cycles in differential equations modelling the predatorprey interaction Chin. Sci. Bull. 29 9 1984 521 523
    • (1984) Chin. Sci. Bull. , vol.29 , Issue.9 , pp. 521-523
    • Chen, L.1    Jing, Z.2
  • 3
    • 0037332898 scopus 로고    scopus 로고
    • Complex dynamics of Holling type II Lotka-Volterra predator-prey system with impulsive perturbations on the predator
    • DOI 10.1016/S0960-0779(02)00408-3, PII S0960077902004083
    • X. Liu, and L. Chen Complex dynamics of Holling type II Lotka-Volterra predatorprey system with impulsive perturbations on the predator Chaos, Solitons Fractals 16 2003 311 320 (Pubitemid 35412184)
    • (2003) Chaos, Solitons and Fractals , vol.16 , Issue.2 , pp. 311-320
    • Liu, X.1    Chen, L.2
  • 4
    • 10044278294 scopus 로고    scopus 로고
    • Periodic solutions for a predatorprey model with Holling-type functional response and time delays
    • R. Xu, M.A.J. Chaplain, and F.A. Davidson Periodic solutions for a predatorprey model with Holling-type functional response and time delays Appl. Math. Comput. 161 2005 637 654
    • (2005) Appl. Math. Comput. , vol.161 , pp. 637-654
    • Xu, R.1    Chaplain, M.A.J.2    Davidson, F.A.3
  • 5
    • 33749640702 scopus 로고    scopus 로고
    • Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge
    • DOI 10.1016/j.jde.2006.08.001, PII S0022039606003202
    • Wonlyul Ko, and Kimun Ryu Qualitative analysis of a predatorprey model with Holling type II functional response incorporating a prey refuge J. Differential Equations 231 2006 534 550 (Pubitemid 44542472)
    • (2006) Journal of Differential Equations , vol.231 , Issue.2 , pp. 534-550
    • Ko, W.1    Ryu, K.2
  • 6
    • 33746005301 scopus 로고    scopus 로고
    • Complex dynamics of a Holling type II prey-predator system with state feedback control
    • DOI 10.1016/j.chaos.2005.09.077, PII S0960077905009458
    • G. Jiang, Q. Lu, and L. Qian Complex dynamics of a Holling type II prey-predator system with state feedback control Chaos, Solitons Fractals 31 2007 448 461 (Pubitemid 44067472)
    • (2007) Chaos, Solitons and Fractals , vol.31 , Issue.2 , pp. 448-461
    • Jiang, G.1    Lu, Q.2    Qian, L.3
  • 7
    • 0003196710 scopus 로고
    • Integro-differential equations and delay models in population dynamics
    • Springer-Verlag Berlin, Heidelberg, New York
    • J.M. Cushing Integro-differential equations and delay models in population dynamics Lecture Notes in Biomathematics vol. 20 1977 Springer-Verlag Berlin, Heidelberg, New York
    • (1977) Lecture Notes in Biomathematics , vol.20
    • Cushing, J.M.1
  • 10
    • 0001813929 scopus 로고
    • On theoretical models for competitive and predatory biological systems
    • M.S. Bartlett On theoretical models for competitive and predatory biological systems Biometrika 44 1957 27 42
    • (1957) Biometrika , vol.44 , pp. 27-42
    • Bartlett, M.S.1
  • 11
    • 0032058512 scopus 로고    scopus 로고
    • Global analyses in some delayed ratio-dependent predator-prey systems
    • PII S0362546X97004914
    • E. Beretta, and Y. Kuang Global analyses in some delayed ratio-dependent predatorprey systems Nonlinear Anal. TMA 32 1998 381 408 (Pubitemid 128397593)
    • (1998) Nonlinear Analysis, Theory, Methods and Applications , vol.32 , Issue.3 , pp. 381-408
    • Beretta, E.1    Kuang, Y.2
  • 12
    • 0001519022 scopus 로고
    • Time lag in prey-predator population models
    • P.J. Wangersky, and W.J. Cunningham Time lag in prey-predator population models Ecology 38 1957 136 139
    • (1957) Ecology , vol.38 , pp. 136-139
    • Wangersky, P.J.1    Cunningham, W.J.2
  • 13
    • 0025132577 scopus 로고
    • A time delay model of single species growth with stage structure
    • W.G. Aiello, and H.I. Freedman A time delay model of single species growth with stage structure Math. Biosci. 101 1990 139 156
    • (1990) Math. Biosci. , vol.101 , pp. 139-156
    • Aiello, W.G.1    Freedman, H.I.2
  • 14
    • 0035051672 scopus 로고    scopus 로고
    • Optimal harvesting and stability for a two-species competitive system with stage structure
    • DOI 10.1016/S0025-5564(00)00068-7, PII S0025556400000687
    • X. Song, and L. Chen Optimal harvesting and stability for a two-species competitive system with stage structure Math. Biosci. 170 2001 173 186 (Pubitemid 32303991)
    • (2001) Mathematical Biosciences , vol.170 , Issue.2 , pp. 173-186
    • Song, X.1    Chen, L.2
  • 15
    • 0031124171 scopus 로고    scopus 로고
    • A predator-prey system with stage-structure for predator
    • PII S0898122197000564
    • W. Wang, and L. Chen A predatorprey system with stage structure for predator Comput. Math. Appl. 33 1997 83 91 (Pubitemid 127381336)
    • (1997) Computers and Mathematics with Applications , vol.33 , Issue.8 , pp. 83-91
    • Wang, W.1    Chen, L.2
  • 17
    • 17444362955 scopus 로고    scopus 로고
    • Global stability of a predator-prey system with stage structure for the predator
    • DOI 10.1007/s10114-002-0234-2
    • Y. Xiao, and L. Chen Global stability of a predatorprey system with stage structure for the predator Acta Math. Sin. Engl. Ser. 20 2004 63 70 (Pubitemid 40549592)
    • (2004) Acta Mathematica Sinica, English Series , vol.20 , Issue.1 , pp. 63-70
    • Xiao, Y.N.1    Chen, L.S.2
  • 18
    • 4944222203 scopus 로고    scopus 로고
    • Persistence and global stability of a ratio-dependent predatorprey model with stage structure
    • R. Xu, M.A.J. Chaplain, and F. Davidson Persistence and global stability of a ratio-dependent predatorprey model with stage structure Appl. Math. Comput. 158 2004 729 744
    • (2004) Appl. Math. Comput. , vol.158 , pp. 729-744
    • Xu, R.1    Chaplain, M.A.J.2    Davidson, F.3
  • 19
    • 0033668215 scopus 로고    scopus 로고
    • The stage-structured predatorprey model and optimal havesting policy
    • X. Zhang, L. Chen, and Avidan U. Neumann The stage-structured predatorprey model and optimal havesting policy Math. Biosci. 168 2000 201 210
    • (2000) Math. Biosci. , vol.168 , pp. 201-210
    • Zhang, X.1    Chen, L.2    Neumann, A.U.3
  • 21
    • 0000802631 scopus 로고
    • Persistence in infinite-dimensional systems
    • J. Hale, and P. Waltman Persistence in infinite-dimensional systems SIAM J. Math. Anal. 20 1989 388 395
    • (1989) SIAM J. Math. Anal. , vol.20 , pp. 388-395
    • Hale, J.1    Waltman, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.