-
1
-
-
79955484647
-
Peristaltic transport of a generalized Burgers' fluid: Application to the movement of chyme in small intestine
-
10.1016/j.actaastro.2010.12.010
-
D. Tripathi, S.K. Pandey, and S. Das Peristaltic transport of a generalized Burgers' fluid: application to the movement of chyme in small intestine Acta Astronaut. 2011 10.1016/j.actaastro.2010.12.010
-
(2011)
Acta Astronaut.
-
-
Tripathi, D.1
Pandey, S.K.2
Das, S.3
-
2
-
-
79955476707
-
Influence of slip condition on peristaltic transport of a viscoelastic fluid with fractional Burgers' model
-
10.2298/TSCI090924043T
-
D. Tripathi, P.K. Gupta, and S. Das Influence of slip condition on peristaltic transport of a viscoelastic fluid with fractional Burgers' model Therm. Sci. 2010 10.2298/TSCI090924043T
-
(2010)
Therm. Sci.
-
-
Tripathi, D.1
Gupta, P.K.2
Das, S.3
-
3
-
-
79551562139
-
Peristaltic transport of a viscoelastic fluid in a channel
-
D. Tripathi Peristaltic transport of a viscoelastic fluid in a channel Acta Astronaut. 68 78 2011 1379 1385
-
(2011)
Acta Astronaut.
, vol.68
, Issue.78
, pp. 1379-1385
-
-
Tripathi, D.1
-
4
-
-
83255192285
-
Numerical and analytical simulation of peristaltic flows of generalized oldroyd-B fluids
-
10.1002/fld.2466
-
D. Tripathi Numerical and analytical simulation of peristaltic flows of generalized oldroyd-B fluids Int. J. Numer. Methods Fluids 2010 10.1002/fld.2466
-
(2010)
Int. J. Numer. Methods Fluids
-
-
Tripathi, D.1
-
6
-
-
35348886158
-
Chaos in the Newton-Leipnik system with fractional order
-
DOI 10.1016/j.chaos.2006.06.013, PII S096007790600587X
-
L.J. Sheu, H.K. Chen, J.H. Chen, L.M. Tam, W.C. Chen, K.T. Lin, and Y. Kang Chaos in the NewtonLeipnik system with fractional order Chaos Solitons Fractals 36 2008 98 103 (Pubitemid 47576640)
-
(2008)
Chaos, Solitons and Fractals
, vol.36
, Issue.1
, pp. 98-103
-
-
Sheu, L.-J.1
Chen, H.-K.2
Chen, J.-H.3
Tam, L.-M.4
Chen, W.-C.5
Lin, K.-T.6
Kang, Y.7
-
7
-
-
0002963435
-
Double strange attractors in rigid body motion
-
R.B. Leipnik, and T.A. Newton Double strange attractors in rigid body motion Phys. Lett. A 86 1981 63 67
-
(1981)
Phys. Lett. A
, vol.86
, pp. 63-67
-
-
Leipnik, R.B.1
Newton, T.A.2
-
8
-
-
65349110270
-
Parametric analysis and impulsive synchronization of fractional-order NewtonLeipnik systems
-
L.J. Sheu, L.M. Tam, S.K. Lao, Y. Kang, K.T. Lin, J.H. Chen, and H.K. Chen Parametric analysis and impulsive synchronization of fractional-order NewtonLeipnik systems Int. J. Nonlinear Sci. Numer. Simul. 10 2009 33 44
-
(2009)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.10
, pp. 33-44
-
-
Sheu, L.J.1
Tam, L.M.2
Lao, S.K.3
Kang, Y.4
Lin, K.T.5
Chen, J.H.6
Chen, H.K.7
-
9
-
-
85171998034
-
Long waves on liquid films
-
D.J. Benney Long waves on liquid films J. Math. Phys. 45 1966 150 155
-
(1966)
J. Math. Phys.
, vol.45
, pp. 150-155
-
-
Benney, D.J.1
-
10
-
-
0016048350
-
Finite amplitude side-band stability of a viscous film
-
S.P. Lin Finite amplitude side-band stability of a viscous film J. Fluid Mech. 63 1974 417 429
-
(1974)
J. Fluid Mech.
, vol.63
, pp. 417-429
-
-
Lin, S.P.1
-
11
-
-
0031188144
-
On the BenneyLin and Kawahara equation
-
H.A. Biaginoi, and F. Linares On the BenneyLin and Kawahara equation J. Math. Anal. Appl. 211 1997 131 152
-
(1997)
J. Math. Anal. Appl.
, vol.211
, pp. 131-152
-
-
Biaginoi, H.A.1
Linares, F.2
-
12
-
-
77954628768
-
Application of He's homotopy perturbation method and He's variational iteration methods for solution of BenneyLin equation
-
10.1080/00207160802524770
-
M. Safari, D.D. Ganji, and E.M.M. Sadeghi Application of He's homotopy perturbation method and He's variational iteration methods for solution of BenneyLin equation Int. J. Comput. Math. 2009 10.1080/00207160802524770
-
(2009)
Int. J. Comput. Math.
-
-
Safari, M.1
Ganji, D.D.2
Sadeghi, E.M.M.3
-
13
-
-
0002071686
-
Solitary and periodic solutions of nonlinear non integrable equations
-
N.G. Berloff, and L.N. Howard Solitary and periodic solutions of nonlinear non integrable equations Stud. Appl. Math. 99 1997 1 24
-
(1997)
Stud. Appl. Math.
, vol.99
, pp. 1-24
-
-
Berloff, N.G.1
Howard, L.N.2
-
14
-
-
0031188144
-
On the BenneyLin and Kawahara equation
-
H.A. Biaginoi, and F. Linares On the BenneyLin and Kawahara equation J. Math. Anal. Appl. 211 1997 131 152
-
(1997)
J. Math. Anal. Appl.
, vol.211
, pp. 131-152
-
-
Biaginoi, H.A.1
Linares, F.2
-
15
-
-
33746718032
-
2 initial data
-
DOI 10.1007/s10114-005-0710-6
-
S.B. Cui, D.G. Deng, and S.P. Tao Global existence of solutions for the Cauchy problem of the Kawahara equation with L2 initial data Acta Math. Sinica 22 2006 1457 1466 (Pubitemid 44167535)
-
(2006)
Acta Mathematica Sinica, English Series
, vol.22
, Issue.5
, pp. 1457-1466
-
-
Cui, S.B.1
Deng, D.G.2
Tao, S.P.3
-
17
-
-
34250215244
-
Solution of fractional differential equations by using differential transform method
-
DOI 10.1016/j.chaos.2006.09.004, PII S0960077906008150
-
A. Arikoglu, and I. Ozkol Solution of fractional differential equations by using differential transform method Chaos Solitons Fractals 34 5 2007 1473 1481 (Pubitemid 46907585)
-
(2007)
Chaos, Solitons and Fractals
, vol.34
, Issue.5
, pp. 1473-1481
-
-
Arikoglu, A.1
Ozkol, I.2
-
18
-
-
78149242210
-
Reduced differential transform method for generalized KdV equations
-
Y. Keskin, and G. Oturanc Reduced differential transform method for generalized KdV equations Math. Comput. Appl. 15 3 2010 382 393
-
(2010)
Math. Comput. Appl.
, vol.15
, Issue.3
, pp. 382-393
-
-
Keskin, Y.1
Oturanc, G.2
-
19
-
-
79955469483
-
-
Y. Keskin, Ph.D. Thesis, Selcuk University, 2010
-
Y. Keskin, Ph.D. Thesis, Selcuk University, 2010.
-
-
-
-
20
-
-
69149087769
-
Reduced differential transform method for partial differential equations
-
Y. Keskin, and G. Oturanc Reduced differential transform method for partial differential equations Int. J. Nonlinear Sci. Numer. Simul. 10 6 2009 741 749
-
(2009)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.10
, Issue.6
, pp. 741-749
-
-
Keskin, Y.1
Oturanc, G.2
-
21
-
-
56549083308
-
Application to differential transformation method for solving systems of differential equations
-
S.S. Chen, and C.K. Chen Application to differential transformation method for solving systems of differential equations Nonlinear Anal. Real World Appl. 10 2 2009 881 888
-
(2009)
Nonlinear Anal. Real World Appl.
, vol.10
, Issue.2
, pp. 881-888
-
-
Chen, S.S.1
Chen, C.K.2
-
22
-
-
77953337369
-
Reduced differential transform method for fractional partial differential equations
-
Y. Keskin, and G. Oturanc Reduced differential transform method for fractional partial differential equations Nonlinear Sci. Lett. A 1 2 2010 61 72
-
(2010)
Nonlinear Sci. Lett. A
, vol.1
, Issue.2
, pp. 61-72
-
-
Keskin, Y.1
Oturanc, G.2
-
24
-
-
72749114026
-
Peristaltic flow of viscoelastic fluid with fractional Maxwell model through a model
-
D. Tripathi, S.K. Pandey, and S. Das Peristaltic flow of viscoelastic fluid with fractional Maxwell model through a model Appl. Math. Comput. 215 2010 3645 3654
-
(2010)
Appl. Math. Comput.
, vol.215
, pp. 3645-3654
-
-
Tripathi, D.1
Pandey, S.K.2
Das, S.3
-
25
-
-
8344254453
-
A generalized variational principle in micromorphic thermoelasticity
-
J.H. He A generalized variational principle in micromorphic thermoelasticity Mech. Res. Comm. 3291 2005 93 98
-
(2005)
Mech. Res. Comm.
, vol.3291
, pp. 93-98
-
-
He, J.H.1
-
26
-
-
78651257332
-
Homotopy perturbation method for fractional FornbergWhitham equation
-
P.K. Gupta, and M. Singh Homotopy perturbation method for fractional FornbergWhitham equation Comput. Math. Appl. 61 2010 250 254
-
(2010)
Comput. Math. Appl.
, vol.61
, pp. 250-254
-
-
Gupta, P.K.1
Singh, M.2
-
28
-
-
77954072067
-
An approximate analytical solution of the fractional diffusion equation with absorbent term and external force by homotopy perturbation method
-
S. Das, and P.K. Gupta An approximate analytical solution of the fractional diffusion equation with absorbent term and external force by homotopy perturbation method Z. Naturforsch. 65a 2010 182 190
-
(2010)
Z. Naturforsch.
, vol.65
, pp. 182-190
-
-
Das, S.1
Gupta, P.K.2
-
29
-
-
77649183650
-
A study on the convergence of variational iteration method
-
Z.M. Odibat A study on the convergence of variational iteration method Math. Comput. Modelling 51 910 2010 1181 1192
-
(2010)
Math. Comput. Modelling
, vol.51
, Issue.910
, pp. 1181-1192
-
-
Odibat, Z.M.1
|