메뉴 건너뛰기




Volumn 51, Issue 4, 2011, Pages 816-828

A robust boosting regression tree with applications in quantitative structure-activity relationship studies of organic compounds

Author keywords

[No Author keywords available]

Indexed keywords

FORESTRY; STRUCTURES (BUILT OBJECTS);

EID: 79955366049     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/ci100429u     Document Type: Article
Times cited : (8)

References (36)
  • 3
    • 33645404135 scopus 로고    scopus 로고
    • In Silico Human and Rat Vss Quantitative Structure-Activity Relationship Models
    • Gleeson, M. P.; Waters, N. J.; Paine, S. W.; Davis, A. M. In Silico Human and Rat Vss Quantitative Structure-Activity Relationship Models J. Med. Chem. 2006, 49, 1953-1963
    • (2006) J. Med. Chem. , vol.49 , pp. 1953-1963
    • Gleeson, M.P.1    Waters, N.J.2    Paine, S.W.3    Davis, A.M.4
  • 4
    • 66249116650 scopus 로고    scopus 로고
    • Modified Particle Swarm Optimization Algorithm for Adaptively Configuring Globally Optimal Classification and Regression Trees
    • Zhou, Y. P.; Tang., L. J.; Jiao., J.; Song, D. D.; Jiang, J. H.; Yu, R. Q. Modified Particle Swarm Optimization Algorithm for Adaptively Configuring Globally Optimal Classification and Regression Trees J. Chem. Inf. Model. 2009, 49, 1144-1153
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 1144-1153
    • Zhou, Y.P.1    Tang, L.J.2    Jiao, J.3    Song, D.D.4    Jiang, J.H.5    Yu, R.Q.6
  • 5
    • 77955926475 scopus 로고    scopus 로고
    • QSAR Studies of a Diverse Series of Antimicrobial Agents against Candida albicans by Classification and Regression Trees
    • Tan, S. M.; Jiao, J.; Zhu, X. L.; Zhou, Y. P.; Song, D. D.; Gong, H.; Yu, R. Q. QSAR Studies of a Diverse Series of Antimicrobial Agents against Candida albicans by Classification and Regression Trees Chemom. Intell. Lab. Syst. 2010, 103, 184-190
    • (2010) Chemom. Intell. Lab. Syst. , vol.103 , pp. 184-190
    • Tan, S.M.1    Jiao, J.2    Zhu, X.L.3    Zhou, Y.P.4    Song, D.D.5    Gong, H.6    Yu, R.Q.7
  • 7
    • 2942737435 scopus 로고    scopus 로고
    • Induction of Decision Trees via Evolutionary Programming
    • Delisle, R. K.; Dioxon, S. L. Induction of Decision Trees via Evolutionary Programming J. Chem. Inf. Comput. Sci. 2004, 44, 862-870
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 862-870
    • Delisle, R.K.1    Dioxon, S.L.2
  • 9
    • 0035227873 scopus 로고    scopus 로고
    • A Novel Method for Building Regression Tree Models for QSAR Based on Artificial Ant Colony Systems
    • DOI 10.1021/ci000336s
    • Izrailev, S.; Agrafiotis, D. A Novel Method for Building Regression Tree Models for QSAR Based on Artificial Ant Colony Systems J. Chem. Inf. Comput. Sci. 2001, 41, 176-180 (Pubitemid 33645687)
    • (2001) Journal of Chemical Information and Computer Sciences , vol.41 , Issue.1 , pp. 176-180
    • Izrailev, S.1    Agrafiotis, D.2
  • 11
    • 0345472131 scopus 로고    scopus 로고
    • One Tree or a Forest? Alternative Dendrographic Models
    • Hawkins, D. M.; Musser, B. J. One Tree or a Forest? Alternative Dendrographic Models Comput. Sci. Stat. 1999, 30, 534-542
    • (1999) Comput. Sci. Stat. , vol.30 , pp. 534-542
    • Hawkins, D.M.1    Musser, B.J.2
  • 12
    • 0037365123 scopus 로고    scopus 로고
    • Decision Forest: Combining the Predictions of Multiple Independent Decision Tree Models
    • Tong, W.; Hong, H.; Fang, H.; Xie, Q.; Perkins, R. Decision Forest: Combining the Predictions of Multiple Independent Decision Tree Models J. Chem. Inf. Comput. Sci. 2003, 43, 525-531
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 525-531
    • Tong, W.1    Hong, H.2    Fang, H.3    Xie, Q.4    Perkins, R.5
  • 13
    • 0037498077 scopus 로고    scopus 로고
    • Use of Recursion Forests in the Sequential Screening Process: Consensus Selection by Multiple Recursion Trees
    • van Rhee, A. M. Use of Recursion Forests in the Sequential Screening Process: Consensus Selection by Multiple Recursion Trees J. Chem. Inf. Comput. Sci. 2003, 43, 941-948
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 941-948
    • Van Rhee, A.M.1
  • 14
    • 0242288813 scopus 로고    scopus 로고
    • The support vector machine under test
    • DOI 10.1016/S0925-2312(03)00431-4
    • Meyer, D.; Leisch, F.; Hornik, K. The Support Vector Machine under Test Neurocomputing. 2003, 55, 169-186 (Pubitemid 37336675)
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 169-186
    • Meyer, D.1    Leisch, F.2    Hornik, K.3
  • 15
    • 0347761417 scopus 로고    scopus 로고
    • Improving the classification accuracy in chemistry via boosting technique
    • DOI 10.1016/j.chemolab.2003.10.001
    • He, P.; Xu, C. J.; Liang, Y. Z.; Fang, K. T. Improving the Classification Accuracy in Chemistry via Boosting Technique Chemom. Intell. Lab. Syst. 2004, 70, 39-46 (Pubitemid 38102217)
    • (2004) Chemometrics and Intelligent Laboratory Systems , vol.70 , Issue.1 , pp. 39-46
    • He, P.1    Xu, C.-J.2    Liang, Y.-Z.3    Fang, K.-T.4
  • 16
    • 77649200178 scopus 로고    scopus 로고
    • The Ensemble Bridge Algorithm: A New Modeling Tool for Drug Discovery Problems
    • Culp, M.; Johnson, K.; Michailidis, G. The Ensemble Bridge Algorithm: A New Modeling Tool for Drug Discovery Problems J. Chem. Inf. Model. 2010, 50, 309-316
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 309-316
    • Culp, M.1    Johnson, K.2    Michailidis, G.3
  • 18
    • 35649011609 scopus 로고    scopus 로고
    • Evaluation of Boosted Regression Trees (BRTs) and Two-Step BRT Procedures to Model and Predict Blood-Brain Barrier Passage
    • Deconinck, E.; Zhang, M. H.; Coomans, D.; Heyden, Y. V. Evaluation of Boosted Regression Trees (BRTs) and Two-Step BRT Procedures to Model and Predict Blood-Brain Barrier Passage J. Chemom. 2007, 21, 280-291
    • (2007) J. Chemom. , vol.21 , pp. 280-291
    • Deconinck, E.1    Zhang, M.H.2    Coomans, D.3    Heyden, Y.V.4
  • 19
    • 0025448521 scopus 로고
    • The Strength of Weak Learnability
    • Schapire, R. E. The Strength of Weak Learnability Mach. Learn. 1990, 5, 197-227
    • (1990) Mach. Learn. , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 20
    • 33646849614 scopus 로고    scopus 로고
    • Boosting Support Vector Regression in QSAR Studies of Bioactivities of Chemical Compounds
    • Zhou, Y. P.; Jiang, J. H.; Lin, W. Q.; Zou, H. Y.; Wu, H. L.; Shen, G. L.; Yu, R. Q. Boosting Support Vector Regression in QSAR Studies of Bioactivities of Chemical Compounds Eur. J. Pharm. Sci. 2006, 28, 344-353
    • (2006) Eur. J. Pharm. Sci. , vol.28 , pp. 344-353
    • Zhou, Y.P.1    Jiang, J.H.2    Lin, W.Q.3    Zou, H.Y.4    Wu, H.L.5    Shen, G.L.6    Yu, R.Q.7
  • 21
    • 14744269749 scopus 로고    scopus 로고
    • Boosting Partial Least Square
    • Zhang, M. H.; Xu, Q. S.; Massart, D. L. Boosting Partial Least Square Anal. Chem. 2005, 77, 1423-1431
    • (2005) Anal. Chem. , vol.77 , pp. 1423-1431
    • Zhang, M.H.1    Xu, Q.S.2    Massart, D.L.3
  • 22
    • 34248670398 scopus 로고    scopus 로고
    • QSAR study of angiotensin II antagonists using robust boosting partial least squares regression
    • DOI 10.1016/j.aca.2007.04.031, PII S0003267007007805
    • Zhou, Y. P.; Cai, C. B.; Huan, S.; Jiang, J. H.; Wu, H. L.; Shen, G. L.; Yu, R. Q. QSAR Study of Angiotensin II Antagonists Using Robust Boosting Partial Least Squares Regression Anal. Chim. Acta 2007, 593, 68-74 (Pubitemid 46776622)
    • (2007) Analytica Chimica Acta , vol.593 , Issue.1 , pp. 68-74
    • Zhou, Y.-P.1    Cai, C.-B.2    Huan, S.3    Jiang, J.-H.4    Wu, H.-L.5    Shen, G.-L.6    Yu, R.-Q.7
  • 23
    • 0034250160 scopus 로고    scopus 로고
    • An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization
    • Dietterich, T. G. An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization Mach. Learn. 2000, 40, 139-157
    • (2000) Mach. Learn. , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 25
    • 0034164230 scopus 로고    scopus 로고
    • Additive Logistic Regression: A Statistical View of Boosting
    • Friedman, J.; Hastie, T.; Tibshirani, R. Additive Logistic Regression: A Statistical View of Boosting Ann. Statist. 2000, 28, 337-407 (Pubitemid 33227445)
    • (2000) Annals of Statistics , vol.28 , Issue.2 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 29
    • 19444376669 scopus 로고    scopus 로고
    • From SAR to comparative QSAR: Role of hydrophobicity in the design of 4-hydroxy-5,6-dihydropyran-2-ones HIV-1 protease inhibitors
    • DOI 10.1016/j.bmc.2005.03.049, PII S0968089605002749
    • Bhhatarai, B.; Garg, R. From SAR to Comparative QSAR: Role of Hydrophobicity in the Design of 4-Hydroxy-5,6-dihydropyran-2-ones HIV-1 Protease Inhibitors Bioorg. Med. Chem. 2005, 13, 4078-4084 (Pubitemid 40725040)
    • (2005) Bioorganic and Medicinal Chemistry , vol.13 , Issue.12 , pp. 4078-4084
    • Bhhatarai, B.1    Garg, R.2
  • 30
    • 30344477669 scopus 로고    scopus 로고
    • QSAR by LFER model of HIV protease inhibitor mannitol derivatives using FA-MLR, PCRA, and PLS techniques
    • DOI 10.1016/j.bmc.2005.09.022, PII S0968089605008734
    • Leonard, J. T.; Roy, K. QSAR by LFER Model of HIV Protease Inhibitor Mannitol Derivatives Using FA-MLR, PCRA, and RT Techniques Bioorg. Med. Chem. 2006, 14, 1039-1046 (Pubitemid 43059795)
    • (2006) Bioorganic and Medicinal Chemistry , vol.14 , Issue.4 , pp. 1039-1046
    • Leonard, J.T.1    Roy, K.2
  • 31
    • 36749045167 scopus 로고    scopus 로고
    • Exploring the impact of size of training sets for the development of predictive QSAR models
    • DOI 10.1016/j.chemolab.2007.07.004, PII S0169743907001529
    • Roy, P. P.; Leonard, J. T.; Roy, K. Exploring the Impact of Size of Training Sets for the Development of Predictive QSAR Models Chemom. Intell. Lab. Syst. 2008, 90, 31-42 (Pubitemid 350213175)
    • (2008) Chemometrics and Intelligent Laboratory Systems , vol.90 , Issue.1 , pp. 31-42
    • Roy, P.P.1    Leonard, J.T.2    Roy, K.3
  • 32
    • 33644896260 scopus 로고    scopus 로고
    • MIA-QSAR modelling of anti-HIV-1 activities of some 2-amino-6- arylsulfonylbenzonitriles and their thio and sulfinyl congeners
    • DOI 10.1039/b516396j
    • Freitas, M. P. MIA-QSAR Modelling of Anti-HIV-1 Activities of Some 2-Amino-6-Arylsulfonylbenzonitriles and Their Thio and Sulfinyl Congeners Org. Biomol. Chem. 2006, 4, 1154-1159 (Pubitemid 43383363)
    • (2006) Organic and Biomolecular Chemistry , vol.4 , Issue.6 , pp. 1154-1159
    • Freitas, M.P.1
  • 33
    • 1342279555 scopus 로고    scopus 로고
    • QSAR study of flavonoid derivatives as p56lck tyrosinkinase inhibitors
    • DOI 10.1016/j.bmc.2003.11.024
    • Thakur, A.; Vishwakarma, S.; Thakur, M. QSAR Study of Flavonoid Derivatives as P56lck Tyrosinkinase Inhibitors Bioorg. Med. Chem. 2004, 12, 1209-1214 (Pubitemid 38251311)
    • (2004) Bioorganic and Medicinal Chemistry , vol.12 , Issue.5 , pp. 1209-1214
    • Thakur, A.1    Vishwakarma, S.2    Thakur, M.3
  • 34
    • 0031753758 scopus 로고    scopus 로고
    • Detection of nonlinearity in multivariate calibration
    • DOI 10.1016/S0003-2670(98)00543-1, PII S0003267098005431
    • Centner, V.; de Noord, O. E.; Massart, D. L. Detection of Nonlinearity in Multivariate Calibration Anal. Chim. Acta 1998, 376, 153-168 (Pubitemid 28532668)
    • (1998) Analytica Chimica Acta , vol.376 , Issue.2 , pp. 153-168
    • Centner, V.1    De Noord, O.E.2    Massart, D.L.3
  • 35
    • 0030606843 scopus 로고    scopus 로고
    • Detection of inhomogeneities in sets of NIR spectra
    • DOI 10.1016/0003-2670(96)00150-X
    • Centnera, V.; Massart, D. L.; de Noord, O. X. Detection of Inhomogeneities in Sets of NIR Spectra Anal. Chim. Acta 1996, 330, 1-17 (Pubitemid 26274007)
    • (1996) Analytica Chimica Acta , vol.330 , Issue.1 , pp. 1-17
    • Centner, V.1    Massart, D.L.2    De Noord, O.E.3
  • 36
    • 84952094529 scopus 로고
    • Detection of Influential Observations in Linear Regression
    • Cook, R. D. Detection of Influential Observations in Linear Regression Technometrics 1977, 19, 15-18
    • (1977) Technometrics , vol.19 , pp. 15-18
    • Cook, R.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.