메뉴 건너뛰기




Volumn 25, Issue 4, 2011, Pages 159-168

Partitioned partial least squares regression with application to a batch fermentation process

Author keywords

Functional data; Near infrared (NIR) spectra; Profiles; Variable selection

Indexed keywords

FERMENTATION; FORECASTING; INFRARED DEVICES; LEAST SQUARES APPROXIMATIONS; POLYMERASE CHAIN REACTION; PROCESS CONTROL; STANDARDIZATION;

EID: 79954532458     PISSN: 08869383     EISSN: 1099128X     Source Type: Journal    
DOI: 10.1002/cem.1332     Document Type: Article
Times cited : (8)

References (32)
  • 1
    • 0028483476 scopus 로고
    • Monitoring of batch process using multiway principal component analysis
    • Nomikos P, MacGregor JF. Monitoring of batch process using multiway principal component analysis. AIChE J. 1994; 40: 1361-1375.
    • (1994) AIChE J. , vol.40 , pp. 1361-1375
    • Nomikos, P.1    MacGregor, J.F.2
  • 2
    • 0029252734 scopus 로고
    • Multivariate SPC charts for monitoring batch processes
    • Nomikos P, MacGregor JF. Multivariate SPC charts for monitoring batch processes. Technometrics 1995; 37: 41-59.
    • (1995) Technometrics , vol.37 , pp. 41-59
    • Nomikos, P.1    MacGregor, J.F.2
  • 3
    • 0028825273 scopus 로고
    • Multiway partial least squares in monitoring batch processes
    • Nomikos P, MacGregor JF. Multiway partial least squares in monitoring batch processes. Chemometr. Intell. Lab. Syst. 1995; 30: 97-108.
    • (1995) Chemometr. Intell. Lab. Syst. , vol.30 , pp. 97-108
    • Nomikos, P.1    MacGregor, J.F.2
  • 5
    • 0034812204 scopus 로고    scopus 로고
    • Statistical analysis of catalyst degradation in a semi-contious chemical production process
    • Kaskavelis E, Martin E, Jonathan P, Morris J. Statistical analysis of catalyst degradation in a semi-contious chemical production process. J Chemom. 2001; 15: 665-683.
    • (2001) J Chemom. , vol.15 , pp. 665-683
    • Kaskavelis, E.1    Martin, E.2    Jonathan, P.3    Morris, J.4
  • 10
    • 0033905297 scopus 로고    scopus 로고
    • Interval partial least-squares regression (iPLS): a comparative chemometric study with an example from near-infrared spectroscopy
    • Nørgaard L, Saudland A, Wagner J, Nielsen JP, Munck L, Engelsen SB. Interval partial least-squares regression (iPLS): a comparative chemometric study with an example from near-infrared spectroscopy. Appl. Spectrosc. 2000; 54: 413-419.
    • (2000) Appl. Spectrosc. , vol.54 , pp. 413-419
    • Nørgaard, L.1    Saudland, A.2    Wagner, J.3    Nielsen, J.P.4    Munck, L.5    Engelsen, S.B.6
  • 11
    • 35348906983 scopus 로고    scopus 로고
    • Functional principal component regression and functional partial least squares
    • Reiss PT, Ogden RT. Functional principal component regression and functional partial least squares. J. Am. Stat. Assoc. 2007; 102: 984-996.
    • (2007) J. Am. Stat. Assoc. , vol.102 , pp. 984-996
    • Reiss, P.T.1    Ogden, R.T.2
  • 12
    • 0033647286 scopus 로고    scopus 로고
    • Application of genetic algorithm-PLS for feature selection in spectral data sets
    • Leardi R. Application of genetic algorithm-PLS for feature selection in spectral data sets. J. Chemom. 2000; 14: 643-655.
    • (2000) J. Chemom. , vol.14 , pp. 643-655
    • Leardi, R.1
  • 13
    • 0037282647 scopus 로고    scopus 로고
    • Multivariate dynamic data modeling for analysis and statistical process control of batch processes, start-ups and grade transitions
    • Kourti T. Multivariate dynamic data modeling for analysis and statistical process control of batch processes, start-ups and grade transitions. J. Chemom. 2003; 17: 93-109.
    • (2003) J. Chemom. , vol.17 , pp. 93-109
    • Kourti, T.1
  • 14
    • 0037150785 scopus 로고    scopus 로고
    • Variable selection for multivariate calibration using a genetic algorithm: prediction of additive concentrations in polymer films from Fourier transform-infrared spectral data
    • Leardi R, Seasholtz MB, Pell RJ. Variable selection for multivariate calibration using a genetic algorithm: prediction of additive concentrations in polymer films from Fourier transform-infrared spectral data. Anal. Chim. Acta 2002; 461: 189-200.
    • (2002) Anal. Chim. Acta , vol.461 , pp. 189-200
    • Leardi, R.1    Seasholtz, M.B.2    Pell, R.J.3
  • 15
    • 18844432760 scopus 로고    scopus 로고
    • Sequential application of backward interval partial least squares and genetic algorithms for the selection of relevant spectral regions
    • Leardi R, Nørgaard L. Sequential application of backward interval partial least squares and genetic algorithms for the selection of relevant spectral regions. J. Chemom. 2004; 18: 486-497.
    • (2004) J. Chemom. , vol.18 , pp. 486-497
    • Leardi, R.1    Nørgaard, L.2
  • 16
    • 0037099131 scopus 로고    scopus 로고
    • Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and near-infrared spectroscopic data
    • Jiang JH, Berry RJ, Siesler HW, Ozaki Y. Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and near-infrared spectroscopic data. Anal. Chem. 2002; 74: 3555-3565.
    • (2002) Anal. Chem. , vol.74 , pp. 3555-3565
    • Jiang, J.H.1    Berry, R.J.2    Siesler, H.W.3    Ozaki, Y.4
  • 17
    • 0037613488 scopus 로고    scopus 로고
    • Selecting both latent and explanatory variables in the PLS1 regression model
    • Lazraq A, Cléroux R, Gauchi JP. Selecting both latent and explanatory variables in the PLS1 regression model. Chemometr. Intell. Lab. Syst. 2003; 65: 117-126.
    • (2003) Chemometr. Intell. Lab. Syst. , vol.65 , pp. 117-126
    • Lazraq, A.1    Cléroux, R.2    Gauchi, J.P.3
  • 18
    • 0347482406 scopus 로고    scopus 로고
    • Spectral regions selection to improve prediction ability of PLS models by changeable size moving window partial least squares and searching combination moving window partial least squares
    • Du YP, Liang YZ, Jiang JH, Berry RJ, Ozaki Y. Spectral regions selection to improve prediction ability of PLS models by changeable size moving window partial least squares and searching combination moving window partial least squares. Anal. Chim. Acta 2004; 501: 183-191.
    • (2004) Anal. Chim. Acta , vol.501 , pp. 183-191
    • Du, Y.P.1    Liang, Y.Z.2    Jiang, J.H.3    Berry, R.J.4    Ozaki, Y.5
  • 19
    • 34547681617 scopus 로고    scopus 로고
    • Removing uncertain variables based on ensemble partial least squares
    • Chen D, Cai W, Shao X. Removing uncertain variables based on ensemble partial least squares. Anal. Chim. Acta 2007; 598: 19-26.
    • (2007) Anal. Chim. Acta , vol.598 , pp. 19-26
    • Chen, D.1    Cai, W.2    Shao, X.3
  • 20
    • 43049123764 scopus 로고    scopus 로고
    • Automated wavelength selection for spectroscopic fuel models by symmetrically contracting repeated unmoving window partial least squares
    • Cramer JA, Kramer KE, Johnson KJ, Morris RE, Rose-Pehrsson SL. Automated wavelength selection for spectroscopic fuel models by symmetrically contracting repeated unmoving window partial least squares. Chemometr. Intell. Lab. Syst. 2008; 92: 13-21.
    • (2008) Chemometr. Intell. Lab. Syst. , vol.92 , pp. 13-21
    • Cramer, J.A.1    Kramer, K.E.2    Johnson, K.J.3    Morris, R.E.4    Rose-Pehrsson, S.L.5
  • 21
    • 0035852404 scopus 로고    scopus 로고
    • Variable and subset selection in PLS regression
    • Höskuldsson A. Variable and subset selection in PLS regression. Chemometr. Intell. Lab. Syst. 2001; 55: 23-38.
    • (2001) Chemometr. Intell. Lab. Syst. , vol.55 , pp. 23-38
    • Höskuldsson, A.1
  • 22
    • 34250887501 scopus 로고    scopus 로고
    • Multivariate statistical analysis of a multi-step industrial process
    • Reinikainen S-P, Höskuldsson A. Multivariate statistical analysis of a multi-step industrial process. Anal. Chim. Acta 2007; 595: 248-256.
    • (2007) Anal. Chim. Acta , vol.595 , pp. 248-256
    • Reinikainen, S.-P.1    Höskuldsson, A.2
  • 23
    • 27644451742 scopus 로고    scopus 로고
    • The prediction error in CLS and PLS: the importance of feature selection prior to multivariate calibration
    • Nadler B, Coifman R. The prediction error in CLS and PLS: the importance of feature selection prior to multivariate calibration. J. Chemom. 2005; 19: 107-118.
    • (2005) J. Chemom. , vol.19 , pp. 107-118
    • Nadler, B.1    Coifman, R.2
  • 24
    • 35948968105 scopus 로고    scopus 로고
    • Two-stage variable selection using the wavelet transform of batch trajectoris for data interpretation and contruction of parsimonious quality-estimation models
    • Chu YH, Kim D, Han C, Yoon ES. Two-stage variable selection using the wavelet transform of batch trajectoris for data interpretation and contruction of parsimonious quality-estimation models. Ind. Eng. Chem. Res. 2007; 46: 7188-7107.
    • (2007) Ind. Eng. Chem. Res. , vol.46 , pp. 7188-7107
    • Chu, Y.H.1    Kim, D.2    Han, C.3    Yoon, E.S.4
  • 25
    • 13644261749 scopus 로고    scopus 로고
    • Clusterwise PLS regression on a stochastic process
    • Preda C, Saporta G. Clusterwise PLS regression on a stochastic process. Comput. Stat. Data Anal. 2005; 49: 99-108.
    • (2005) Comput. Stat. Data Anal. , vol.49 , pp. 99-108
    • Preda, C.1    Saporta, G.2
  • 26
    • 33750976981 scopus 로고    scopus 로고
    • Theoretical framework for local PLS1 regression, and application to a rainfall data set
    • Sicard E, Sabatier R. Theoretical framework for local PLS1 regression, and application to a rainfall data set. Comput. Stat. Data Anal. 2006; 51: 1393-1410.
    • (2006) Comput. Stat. Data Anal. , vol.51 , pp. 1393-1410
    • Sicard, E.1    Sabatier, R.2
  • 29
    • 1542680928 scopus 로고    scopus 로고
    • A statistical process control framework for the characterization of variation in batch profiles
    • Kaista N, Moore CF, Leitnaker MG. A statistical process control framework for the characterization of variation in batch profiles. Technometrics 2004; 46: 53-68.
    • (2004) Technometrics , vol.46 , pp. 53-68
    • Kaista, N.1    Moore, C.F.2    Leitnaker, M.G.3
  • 31
    • 0037282748 scopus 로고    scopus 로고
    • Centering and scaling in component analysis
    • Bro R, Smilde A. Centering and scaling in component analysis. J. Chemom. 2003; 17: 13-33.
    • (2003) J. Chemom. , vol.17 , pp. 13-33
    • Bro, R.1    Smilde, A.2
  • 32
    • 0030816163 scopus 로고    scopus 로고
    • Two data sets for near infrared spectra
    • Kalivas JH. Two data sets for near infrared spectra. Chemometr. Intell. Lab. Syst. 1997; 37: 255-259.
    • (1997) Chemometr. Intell. Lab. Syst. , vol.37 , pp. 255-259
    • Kalivas, J.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.