메뉴 건너뛰기




Volumn 8, Issue 2, 2011, Pages

Bispectrum-based feature extraction technique for devising a practical brain-computer interface

Author keywords

[No Author keywords available]

Indexed keywords

BISPECTRUM; BRAIN STATE; CLASSIFICATION ACCURACY; COMPUTER INTERFACES; EEG SIGNALS; FEATURE EXTRACTION TECHNIQUES; FREQUENCY COMPONENTS; GAUSSIANS; HIGHER ORDER STATISTICS; LINEAR CHARACTERISTICS; LINEAR DISCRIMINANT ANALYSIS; MOTOR IMAGERY; MUTUAL INFORMATIONS; NON-GAUSSIAN; NONLINEAR DYNAMIC CHARACTERISTICS; NONLINEAR INTERACTIONS; NONSTATIONARY; PERFORMANCE MEASURE; SIGNAL PROCESSING TECHNIQUE; TASK DETECTION;

EID: 79954520835     PISSN: 17412560     EISSN: 17412552     Source Type: Journal    
DOI: 10.1088/1741-2560/8/2/025014     Document Type: Conference Paper
Times cited : (61)

References (37)
  • 2
    • 70349771057 scopus 로고    scopus 로고
    • The brain-computer interface cycle
    • van Gerven M et al 2009 The brain-computer interface cycle J. Neural Eng. 6 041001
    • (2009) J. Neural Eng. , vol.6 , pp. 041001
    • Van Gerven, M.1
  • 4
    • 0032829330 scopus 로고    scopus 로고
    • Event-related EEG/MEG synchronization and desynchronization: Basic principles
    • DOI 10.1016/S1388-2457(99)00141-8, PII S1388245799001418
    • Pfurtscheller G and da Silva F H L 1999 Event-related EEG/MEG synchronization and desynchronization: basic principles Clin. Neurophysiol. 110 1842-57 (Pubitemid 29454610)
    • (1999) Clinical Neurophysiology , vol.110 , Issue.11 , pp. 1842-1857
    • Pfurtscheller, G.1    Lopes, D.S.F.H.2
  • 6
    • 0000294854 scopus 로고    scopus 로고
    • Motor imagery direct communication
    • Pfurtscheller G and Neuper C 2001 Motor imagery direct communication Proc. IEEE 89 1123-34
    • (2001) Proc. IEEE , vol.89 , pp. 1123-1134
    • Pfurtscheller, G.1    Neuper, C.2
  • 10
    • 53249101512 scopus 로고    scopus 로고
    • Bipolar electrode selection for a motor imagery based brain - Computer interface
    • Lou B, Hong B, Gao X and Gao S 2008 Bipolar electrode selection for a motor imagery based brain - computer interface J. Neural Eng. 5 342-9
    • (2008) J. Neural Eng. , vol.5 , pp. 342-349
    • Lou, B.1    Hong, B.2    Gao, X.3    Gao, S.4
  • 14
    • 38349077304 scopus 로고    scopus 로고
    • Classifying mental tasks based on features of higher-order statistics from EEG signals in brain - Computer interface
    • Zhou S-M, Gan J Q and Sepulveda F 2008 Classifying mental tasks based on features of higher-order statistics from EEG signals in brain - computer interface Inf. Sci. 178 1629-40
    • (2008) Inf. Sci. , vol.178 , pp. 1629-1640
    • Zhou, S.-M.1    Gan, J.Q.2    Sepulveda, F.3
  • 15
    • 33746397207 scopus 로고    scopus 로고
    • An enhanced time-frequency-spatial approach for motor imagery classification
    • Yamawaki N, Wilke, Liu Z and Bin H 2006 An enhanced time-frequency- spatial approach for motor imagery classification IEEE Trans. Neural Syst. Rehabil. Eng. 14 250-4
    • (2006) IEEE Trans. Neural Syst. Rehabil. Eng. , vol.14 , pp. 250-254
    • Yamawaki, N.1    Wilke2    Liu, Z.3    Bin, H.4
  • 17
    • 2442690499 scopus 로고    scopus 로고
    • BCI competition 2003 - Data set iv: An algorithm based on cssd and fda for classifying single-trial EEG
    • Wang Y, Zhang Z, Yong L, Gao X, Gao S and Yang F 2004 BCI competition 2003 - data set iv: an algorithm based on cssd and fda for classifying single-trial EEG IEEE Trans. Biomed. Eng. 51 1081-6
    • (2004) IEEE Trans. Biomed. Eng. , vol.51 , pp. 1081-1086
    • Wang, Y.1    Zhang, Z.2    Yong, L.3    Gao, X.4    Gao, S.5    Yang, F.6
  • 20
    • 70449382011 scopus 로고    scopus 로고
    • Neural network based auto association and time-series prediction for biosignal processing in brain - Computer interfaces
    • Coyle D 2009 Neural network based auto association and time-series prediction for biosignal processing in brain - computer interfaces IEEE Comput. Intell. Mag. 4 47-59
    • (2009) IEEE Comput. Intell. Mag. , vol.4 , pp. 47-59
    • Coyle, D.1
  • 21
    • 2442655412 scopus 로고    scopus 로고
    • Classification of single-trial electroencephalogram during finger movement
    • Li Y, Gao X, Liu H and Gao S 2004 Classification of single-trial electroencephalogram during finger movement IEEE Trans. Biomed. Eng. 51 1019-25
    • (2004) IEEE Trans. Biomed. Eng. , vol.51 , pp. 1019-1025
    • Li, Y.1    Gao, X.2    Liu, H.3    Gao, S.4
  • 22
    • 0031293562 scopus 로고    scopus 로고
    • Using adaptive autoregressive parameters for a brain - Computer-interface experiment
    • Schlögl A, Lugger K and Pfurtscheller G 1997 Using adaptive autoregressive parameters for a brain - computer-interface experiment Proc. IEEE Eng Med. Biol. 4 1533-5
    • (1997) Proc. IEEE Eng Med. Biol. , vol.4 , pp. 1533-1535
    • Schlögl, A.1    Lugger, K.2    Pfurtscheller, G.3
  • 23
    • 33748114502 scopus 로고    scopus 로고
    • Cardiac responses induced during thought-based control of a virtual environment
    • DOI 10.1016/j.ijpsycho.2006.03.001, PII S0167876006000596
    • Pfurtscheller G, Leeb R and Slater M 2006 Cardiac responses induced during thought-based control of a virtual environment Int. J. Psychophysiol. 62 134-40 (Pubitemid 44307373)
    • (2006) International Journal of Psychophysiology , vol.62 , Issue.1 , pp. 134-140
    • Pfurtscheller, G.1    Leeb, R.2    Slater, M.3
  • 24
    • 0034868606 scopus 로고    scopus 로고
    • Hidden Markov models for online classification of single trial EEG data
    • DOI 10.1016/S0167-8655(01)00075-7, PII S0167865501000757, Selected Papers from The 11th Portuguese Conference on Pattern Recognitition - RECPAD2000
    • Obermaier B, Guger C, Neuper C and Pfurtscheller G 2001 Hidden Markov models for online classification of single trial EEG data Pattern Recognit. Lett. 22 1299-309 (Pubitemid 32784363)
    • (2001) Pattern Recognition Letters , vol.22 , Issue.12 , pp. 1299-1309
    • Obermaier, B.1    Guger, C.2    Neuper, C.3    Pfurtscheller, G.4
  • 25
    • 49649127153 scopus 로고    scopus 로고
    • Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification
    • Herman P, Prasad G, McGinnity T M and Coyle D 2008 Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification IEEE Trans. Neural Syst. Rehabil. Eng. 16 317-26
    • (2008) IEEE Trans. Neural Syst. Rehabil. Eng. , vol.16 , pp. 317-326
    • Herman, P.1    Prasad, G.2    McGinnity, T.M.3    Coyle, D.4
  • 26
    • 2442667854 scopus 로고    scopus 로고
    • BCI competition 2003 - Data set III: Probabilistic modeling of sensorimotor mu rhythms for classification of imaginary hand movements
    • Lemm S, Schfer C and Curio G 2004 BCI competition 2003 - data set III: probabilistic modeling of sensorimotor mu rhythms for classification of imaginary hand movements IEEE Trans. Biomed. Eng. 51 1077-80
    • (2004) IEEE Trans. Biomed. Eng. , vol.51 , pp. 1077-1080
    • Lemm, S.1    Schfer, C.2    Curio, G.3
  • 27
    • 33750469388 scopus 로고    scopus 로고
    • Adaptive subject-based feature extraction in brain-computer interfaces using wavelet packet best basis decomposition
    • Yang B-h, Yan G-z, Yan R-g and Wu T 2007 Adaptive subject-based feature extraction in brain-computer interfaces using wavelet packet best basis decomposition Med. Eng. Phys. 29 48-53
    • (2007) Med. Eng. Phys. , vol.29 , pp. 48-53
    • Yang, B.-H.1    Yan, G.-Z.2    Yan, R.-G.3    Wu, T.4
  • 29
    • 0032963090 scopus 로고    scopus 로고
    • Testing procedures for non-stationarity and non-linearity in physiological signals
    • DOI 10.1016/S0025-5564(98)10088-3, PII S0025556498100883
    • Popivanov D and Mineva A 1999 Testing procedures for non-stationarity and non-linearity in physiological signals Math. Biosci. 157 303-20 (Pubitemid 29165073)
    • (1999) Mathematical Biosciences , vol.157 , Issue.1-2 , pp. 303-320
    • Popivanov, D.1    Mineva, A.2
  • 30
    • 79954463872 scopus 로고    scopus 로고
    • A bispectrum approach to feature extraction for a motor imagery based brain - Computer interfacing system
    • Shahid S, Sinha R K and Prasad G 2010 A bispectrum approach to feature extraction for a motor imagery based brain - computer interfacing system 18th European Signal Processing Conf. (EUSIPCO-2010) pp 1831-5 http://www.eurasip. org/Proceedings/Eusipco/Eusipco2010/Contents/papers/1569292877.pdf
    • (2010) 18th European Signal Processing Conf. (EUSIPCO-2010) , pp. 1831-1835
    • Shahid, S.1    Sinha, R.K.2    Prasad, G.3
  • 31
    • 0023383894 scopus 로고
    • Bispectrum estimation: A digital signal processing framework
    • Nikias C L and Raghuveer M R 1987 Bispectrum estimation: a digital signal processing framework Proc. IEEE 75 869-91
    • (1987) Proc. IEEE , vol.75 , pp. 869-891
    • Nikias, C.L.1    Raghuveer, M.R.2
  • 32
    • 0029378431 scopus 로고
    • On the principal domain of the discrete bispectrum of a stationary signal
    • Hinich M J and Messer H 1995 On the principal domain of the discrete bispectrum of a stationary signal IEEE Trans. Signal Process. 43 2130-4
    • (1995) IEEE Trans. Signal Process. , vol.43 , pp. 2130-2134
    • Hinich, M.J.1    Messer, H.2
  • 34
    • 79954497227 scopus 로고    scopus 로고
    • http://www.bbci.de/competition/iv/desc-2b.pdf
  • 35
    • 14744284163 scopus 로고    scopus 로고
    • The kappa statistic in reliability studies: Use, interpretation, and sample size requirements
    • Sim J and Wright C C 2005 The kappa statistic in reliability studies: use, interpretation and sample size requirements Phys. Ther. 85 257-68 (Pubitemid 40333545)
    • (2005) Physical Therapy , vol.85 , Issue.3 , pp. 257-268
    • Sim, J.1    Wright, C.C.2
  • 36
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • Shannon C E
    • Shannon C E 1948 A mathematical theory of communication Bell Syst. Tech. J. 27 379-423 and 623-656
    • (1948) Bell Syst. Tech. J. , vol.27


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.