-
1
-
-
0042378381
-
Laplacian eigenmaps for dimensionality reduction and data representation
-
DOI 10.1162/089976603321780317
-
M. Belkin; P. Niyogi, "Laplacian Eigenmaps for dimensionality reduction and data representation," Neural Computation, v.15 n.6, p.1373-1396, June 2003. (Pubitemid 37049796)
-
(2003)
Neural Computation
, vol.15
, Issue.6
, pp. 1373-1396
-
-
Belkin, M.1
Niyogi, P.2
-
2
-
-
33745431702
-
Diffusion maps
-
DOI 10.1016/j.acha.2006.04.006, PII S1063520306000546
-
R. Coifman; S. Lafon, "Diffusion Maps," Applied and Computational Harmonic Analysis, special issue on diffusion maps and wavelets, vol. 21, pp. 5-30, July 2006. (Pubitemid 43947619)
-
(2006)
Applied and Computational Harmonic Analysis
, vol.21
, Issue.1
, pp. 5-30
-
-
Coifman, R.R.1
Lafon, S.2
-
3
-
-
19644366699
-
Geometric diffusions as a tool for harmonic analysis and structure definition of data: Multiscale methods
-
DOI 10.1073/pnas.0500896102
-
R. Coifman; S. Lafon; A. Lee; M. Maggioni; B. Nadler; F. Warner; S. Zucker, "Geometric Diffusions as a Tool for Harmonics Analysis and Structure Definition of Data: Multiscale Methods," Proc. Nat'l Academy of Sciences, vol. 102, no. 21, pp. 7432-7437, May 2005. (Pubitemid 40740989)
-
(2005)
Proceedings of the National Academy of Sciences of the United States of America
, vol.102
, Issue.21
, pp. 7432-7437
-
-
Coifman, R.R.1
Lafon, S.2
Lee, A.B.3
Maggioni, M.4
Nadler, B.5
Warner, F.6
Zucker, S.W.7
-
4
-
-
0037948870
-
Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data
-
DOI 10.1073/pnas.1031596100
-
D. Donoho; C. Grimes, "Hessian Eigenmaps: New Locally Linear Embedding Techniques for High-Dimensional Data," Proc. Nat'l Academy of Sciences, vol. 100, no. 10, pp. 5591-5596, May 2003. (Pubitemid 36576852)
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, Issue.10
, pp. 5591-5596
-
-
Donoho, D.L.1
Grimes, C.2
-
5
-
-
84983110889
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Springer-Verlag
-
Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. In Computational Learning Theory: Eurocolt '95, pages 23-37. Springer-Verlag, 1995.
-
(1995)
Computational Learning Theory: Eurocolt '95
, pp. 23-37
-
-
Freund, Y.1
Schapire, R.E.2
-
6
-
-
0022701187
-
A synthetic aperture sonar system capable of operating at high speed and in turbulent media
-
Gough, P.T., A synthetic aperture sonar system capable of operating at high speed and in turbulent media. IEEE Jour. Oceanic Eng., 11(2), pp333, 1986.
-
(1986)
IEEE Jour. Oceanic Eng.
, vol.11
, Issue.2
, pp. 333
-
-
Gough, P.T.1
-
7
-
-
34948879165
-
Novel kernels and kernel PCA for pattern recognition
-
DOI 10.1109/CIRA.2007.382927, 4269927, Proceedings of the 2007 IEEE International Symposium on Computational Intelligence in Robotics and Automation, CIRA 2007
-
Isaacs, J.C.; Foo, S.Y.; Meyer-Baese, A., "Novel Kernels and Kernel PCA for Pattern Recognition," Computational Intelligence in Robotics and Automation, 2007. CIRA 2007. International Symposium on, vol., no., pp.438-443, 20-23 June 2007 (Pubitemid 47515132)
-
(2007)
Proceedings of the 2007 IEEE International Symposium on Computational Intelligence in Robotics and Automation, CIRA 2007
, pp. 438-443
-
-
Isaacs, J.C.1
Foo, S.Y.2
Meyer-Baese, A.3
-
8
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
DOI 10.1126/science.290.5500.2323
-
S. Roweis; L. Saul, "Nonlinear Dimensionality Reduction by Locally Linear Embedding," Science, vol. 290, pp. 2323-2326, 2000. (Pubitemid 32041578)
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
10
-
-
1942482021
-
Principal manifolds and nonlinear dimension reduction via local tangent space alignment
-
Pennsylvania State Univ.
-
Z. Zhang; H. Zha, "Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment," Technical Report CSE-02-019, Dept. of Computer Science and Eng., Pennsylvania State Univ., 2002.
-
(2002)
Technical Report CSE-02-019, Dept. of Computer Science and Eng.
-
-
Zhang, Z.1
Zha, H.2
|