-
2
-
-
0029388116
-
Non-linear normal modes, invariance, and modal dynamics approximations of non-linear systems
-
(doi:10.1007/BF00045620)
-
Boivin, N., Pierre, C. & Shaw, S. W. 1995 Non-linear normal modes, invariance, and modal dynamics approximations of non-linear systems. Nonlinear Dyn. 8, 315-346. (doi:10.1007/BF00045620)
-
(1995)
Nonlinear Dyn.
, vol.8
, pp. 315-346
-
-
Boivin, N.1
Pierre, C.2
Shaw, S.W.3
-
3
-
-
0000210320
-
Symmetries and convergence of normalizing transformations
-
(doi:10.1006/jmaa.1994.1163)
-
Bruno, A. & Walcher, S. 1994 Symmetries and convergence of normalizing transformations. J. Math. Anal. Appl. 183, 571-576. (doi:10.1006/jmaa.1994.1163)
-
(1994)
J. Math. Anal. Appl.
, vol.183
, pp. 571-576
-
-
Bruno, A.1
Walcher, S.2
-
4
-
-
0004096229
-
-
Baldock, UK: Research Studies Press
-
Ewins, D. J. 2000 Modal testing. Baldock, UK: Research Studies Press.
-
(2000)
Modal Testing
-
-
Ewins, D.J.1
-
5
-
-
0002035723
-
On normal form calculations in impact oscillators
-
(doi:10.1098/rspa.2000.0519)
-
Fredriksson, M. H. & Nordmark, A. B. 2000 On normal form calculations in impact oscillators. Proc. R. Soc. Lond. A 456, 315-329. (doi:10.1098/rspa. 2000.0519)
-
(2000)
Proc. R. Soc. Lond. A
, vol.456
, pp. 315-329
-
-
Fredriksson, M.H.1
Nordmark, A.B.2
-
6
-
-
50249183421
-
Modal stability of inclined cables subjected to vertical support excitation
-
(doi:10.1016/j.jsv.2008.04.031)
-
Gonzalez-Buelga, A., Neild, S. A., Wagg, D. J. & Macdonald, J. H. G. 2008 Modal stability of inclined cables subjected to vertical support excitation. J. Sound Vibr. 318, 565-579. (doi:10.1016/j.jsv.2008.04.031)
-
(2008)
J. Sound Vibr.
, vol.318
, pp. 565-579
-
-
Gonzalez-Buelga, A.1
Neild, S.A.2
Wagg, D.J.3
Macdonald, J.H.G.4
-
7
-
-
0001027783
-
Analysis of critical and post-critical behaviour of non-linear dynamical systems by the normal form method, Part II. Divergence and flutter
-
(doi:10.1016/0022-460X(83)90388-7)
-
Hsu, L. 1983 Analysis of critical and post-critical behaviour of non-linear dynamical systems by the normal form method, part II. Divergence and flutter. J. Sound Vibr. 89, 183-194. (doi:10.1016/0022-460X(83)90388-7)
-
(1983)
J. Sound Vibr.
, vol.89
, pp. 183-194
-
-
Hsu, L.1
-
8
-
-
0026223029
-
Analysis of non-linear dynamical systems by the normal form theory
-
DOI 10.1016/0022-460X(91)90446-Q
-
Jezequel, L. & Lamarque, C. H. 1991 Analysis of non-linear dynamic systems by the normal form theory. J. Sound Vibr. 149, 429-459. (doi:10.1016/0022-460X(91)90446-Q) (Pubitemid 21724715)
-
(1991)
Journal of Sound and Vibration
, vol.149
, Issue.3
, pp. 429-459
-
-
Jezequel, L.1
Lamarque, C.H.2
-
9
-
-
28844494949
-
Past, present and future of nonlinear system identification in structural dynamics
-
DOI 10.1016/j.ymssp.2005.04.008, PII S0888327005000828
-
Kerschen, G., Worden, K., Vakakis, A. F. & Golinval, J. C. 2006 Past, present and future of nonlinear system identification in structural dynamics. Mech. Syst. Signal Process. 20, 505-592. (doi:10.1016/j.ymssp.2005.04.008) (Pubitemid 41766672)
-
(2006)
Mechanical Systems and Signal Processing
, vol.20
, Issue.3
, pp. 505-592
-
-
Kerschen, G.1
Worden, K.2
Vakakis, A.F.3
Golinval, J.-C.4
-
10
-
-
0141788280
-
Normal form computation without central manifold reduction
-
(doi:10.1016/S0022-460X(02)01626-7)
-
Leung, A. & Zhang, Q. 2003 Normal form computation without central manifold reduction. J. Sound Vibr. 266, 261-279. (doi:10.1016/S0022-460X(02) 01626-7)
-
(2003)
J. Sound Vibr.
, vol.266
, pp. 261-279
-
-
Leung, A.1
Zhang, Q.2
-
11
-
-
3342914757
-
Practical normal form computations for vector fields
-
(doi:10.1002/zamm.200310115)
-
Mayer, S., Scheurle, J. & Walcher, S. 2004 Practical normal form computations for vector fields. Z. Angew. Math. Mech. 84, 472-482. (doi:10.1002/zamm.200310115)
-
(2004)
Z. Angew. Math. Mech.
, vol.84
, pp. 472-482
-
-
Mayer, S.1
Scheurle, J.2
Walcher, S.3
-
12
-
-
0003582535
-
-
2nd edn. New York, NY: Springer
-
Meyer, K., Hall, G. R. & Offin, D. 2009 Introduction to Hamiltonian dynamical systems and the N-body problem, 2nd edn. New York, NY: Springer.
-
(2009)
Introduction to Hamiltonian Dynamical Systems and the N-body Problem
-
-
Meyer, K.1
Hall, G.R.2
Offin, D.3
-
16
-
-
0032655393
-
Nonlinear normal modes of buckled beams: Three-to-one and one-to-one internal resonances
-
(doi:10.1023/A:1008389024738)
-
Nayfeh, A. H., Lacabonara, W. & Chin, C. 1999 Nonlinear normal modes of buckled beams: three-to-one and one-to-one internal resonances. Nonlinear Dyn. 18, 253-273. (doi:10.1023/A:1008389024738)
-
(1999)
Nonlinear Dyn.
, vol.18
, pp. 253-273
-
-
Nayfeh, A.H.1
Lacabonara, W.2
Chin, C.3
-
17
-
-
57249090241
-
A normal form for nonlinear resonance of embedded solitons
-
(doi:10.1098/rspa.2001.0916)
-
Pelinovsky, D. E. & Yang, J. 2002 A normal form for nonlinear resonance of embedded solitons. Proc. R. Soc. Lond. A 458, 1469-1497. (doi:10.1098/rspa.2001.0916)
-
(2002)
Proc. R. Soc. Lond. A
, vol.458
, pp. 1469-1497
-
-
Pelinovsky, D.E.1
Yang, J.2
-
19
-
-
67650721182
-
Progress in normal form theory
-
(doi:10.1088/0951-7715/22/7/R01)
-
Stolovitch, L. 2009 Progress in normal form theory. Nonlinearity 22, R77-R99. (doi:10.1088/0951-7715/22/7/R01)
-
(2009)
Nonlinearity
, vol.22
-
-
Stolovitch, L.1
-
20
-
-
0003841213
-
-
Cambridge, UK: Cambridge University Press
-
Tondl, A., Ruijgrok, T., Verhulst, F. & Nabergoj, R. 2000 Autoparametric resonance in mechanical systems. Cambridge, UK: Cambridge University Press.
-
(2000)
Autoparametric Resonance in Mechanical Systems
-
-
Tondl, A.1
Ruijgrok, T.2
Verhulst, F.3
Nabergoj, R.4
-
21
-
-
33748795371
-
Nonlinear normal modes for damped geometrically nonlinear systems: Application to reduced-order modelling of harmonically forced structures
-
DOI 10.1016/j.jsv.2006.06.032, PII S0022460X06005141
-
Touze, C. & Amabili, M. 2006 Nonlinear normal modes for damped geometrically nonlinear systems: application to reduced-order modelling of harmonically forced structures. J. Sound Vibr. 298, 958-981. (doi:10.1016/j.jsv.2006.06.032) (Pubitemid 44414867)
-
(2006)
Journal of Sound and Vibration
, vol.298
, Issue.4-5
, pp. 958-981
-
-
Touze, C.1
Amabili, M.2
-
24
-
-
0004224782
-
On transformations into normal form
-
(doi:10.1006/jmaa.1993.1420)
-
Walcher, S. 1993 On transformations into normal form. J. Math. Anal. Appl. 180, 617-632. (doi:10.1006/jmaa.1993.1420)
-
(1993)
J. Math. Anal. Appl.
, vol.180
, pp. 617-632
-
-
Walcher, S.1
-
25
-
-
77955236780
-
On the formal equivalence of normal form theory and the method of multiple time scales
-
(doi:10.1115/1.3079824)
-
Wang, F. & Bajaj, A. K. 2009 On the formal equivalence of normal form theory and the method of multiple time scales. J. Comput. Nonlinear Dyn. 4, 021005. (doi:10.1115/1.3079824)
-
(2009)
J. Comput. Nonlinear Dyn.
, vol.4
, pp. 4
-
-
Wang, F.1
Bajaj, A.K.2
-
26
-
-
0020923497
-
METHOD OF LIE SERIES IN THE MOTION-SEPARATION PROBLEM IN NONLINEAR MECHANICS.
-
DOI 10.1016/0021-8928(83)90083-7
-
Zhuravlev, V. F. 1983 The method of Lie series in the motion-separation problem in nonlinear mechanics. J. Appl. Math. Mech. 47, 461-466. (doi:10.1016/0021-8928(83)90083-7) (Pubitemid 15436904)
-
(1983)
Journal of Applied Mathematics and Mechanics
, vol.47
, Issue.4
, pp. 461-466
-
-
Zhuravlev, V.F.1
|