-
1
-
-
41149113576
-
A posteriori error estimates for the Steklov eigenvalue problem
-
DOI 10.1016/j.apnum.2007.01.011, PII S0168927407000189
-
ARMENTANO, M. G. & PADRA, C. (2008) A posteriori error estimates for the Steklov eigenvalue problem. Appl. Numer. Math., 58, 593-601. (Pubitemid 351443042)
-
(2008)
Applied Numerical Mathematics
, vol.58
, Issue.5
, pp. 593-601
-
-
Armentano, M.G.1
Padra, C.2
-
2
-
-
54249116319
-
Eigenvalue problems
-
North-Holland, Amsterdam
-
BABUSKA, I. & OSBORN, J. E. (1991) Eigenvalue problems. Handbook of Numerical Analysis, vol. II. North-Holland, Amsterdam, pp. 641-787.
-
(1991)
Handbook of Numerical Analysis
, vol.2
, pp. 641-787
-
-
Babuska, I.1
Osborn, J.E.2
-
3
-
-
0040810968
-
A finite element solution of an added mass formulation for coupled fluid-solid vibrations
-
BERMÚDEZ, A., RODRÍGUEZ, R. & SANTAMARINA, D. (2000) A finite element solution of an added mass formulation for coupled fluid-solid vibrations. Numer. Math., 87, 201-227.
-
(2000)
Numer. Math.
, vol.87
, pp. 201-227
-
-
Bermúdez, A.1
Rodríguez, R.2
Santamarina, D.3
-
4
-
-
2442589629
-
Approximation classes for adaptive methods
-
BINEV, P., DAHMEN, W., DEVORE, R. & PETRUSHEV, P. (2002) Approximation classes for adaptive methods. Serdica Math. J., 28, 391-416.
-
(2002)
Serdica Math. J.
, vol.28
, pp. 391-416
-
-
Binev, P.1
Dahmen, W.2
Devore, R.3
Petrushev, P.4
-
5
-
-
54249162100
-
Quasi-optimal convergence rate for an adaptive finite element method
-
CASCÓN, J. M., KREUZER, C., NOCHETTO, R. H. & SIEBERT, K. G. (2008) Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal., 46, 2524-2550.
-
(2008)
SIAM J. Numer. Anal.
, vol.46
, pp. 2524-2550
-
-
Cascón, J.M.1
Kreuzer, C.2
Nochetto, R.H.3
Siebert, K.G.4
-
7
-
-
50849094529
-
Convergence and optimal complexity of adaptive finite element eigenvalue computations
-
DAI, X., XU, J. & ZHOU, A. (2008) Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer. Math., 110, 313-355.
-
(2008)
Numer. Math.
, vol.110
, pp. 313-355
-
-
Dai, X.1
J, X.U.2
Zhou, A.3
-
8
-
-
1542639888
-
A convergent adaptive algorithm for Poisson's equation
-
D̈ORFLER, W. (1996) A convergent adaptive algorithm for Poisson's equation. SIAM J. Numer. Anal., 33, 1106-1124. (Pubitemid 126423840)
-
(1996)
SIAM Journal on Numerical Analysis
, vol.33
, Issue.3
, pp. 1106-1124
-
-
Dorfler, W.1
-
9
-
-
0242558313
-
A posteriori error estimates for the finite element approximation of eigenvalue problems
-
DOI 10.1142/S0218202503002878
-
DURÁ N, R. G., PADRA, C. & RODRÍGUEZ, R. (2003) A posteriori error estimates for the finite element approximation of eigenvalue problems. Math. Models Methods Appl. Sci., 13, 1219-1229. (Pubitemid 37394851)
-
(2003)
Mathematical Models and Methods in Applied Sciences
, vol.13
, Issue.8
, pp. 1219-1229
-
-
Duran, R.G.1
Padra, C.2
Rodriguez, R.3
-
10
-
-
67650046936
-
Convergence of adaptive finite element methods for eigenvalue problems
-
GARAU, E. M., MORIN, P. & ZUPPA, C. (2009) Convergence of adaptive finite element methods for eigenvalue problems. Math. Models Methods Appl. Sci., 19, 721-747.
-
(2009)
Math. Models Methods Appl. Sci.
, vol.19
, pp. 721-747
-
-
Garau, E.M.1
Morin, P.2
Zuppa, C.3
-
11
-
-
71049131730
-
Convergence rates for adaptive finite elements
-
GASPOZ, F. D. & MORIN, P. (2008) Convergence rates for adaptive finite elements. IMA J. Numer. Anal., 29, 917-936.
-
(2008)
IMA J. Numer. Anal.
, vol.29
, pp. 917-936
-
-
Gaspoz, F.D.1
Morin, P.2
-
14
-
-
67650028812
-
A convergent adaptive method for elliptic eigenvalue problems
-
GIANI, S. & GRAHAM, I. G. (2009) A convergent adaptive method for elliptic eigenvalue problems. SIAM J. Numer. Anal., 47, 1067-1091.
-
(2009)
SIAM J. Numer. Anal.
, vol.47
, pp. 1067-1091
-
-
Giani, S.1
Graham, I.G.2
-
16
-
-
0013038652
-
Singular sets of solutions to elliptic equations
-
HAN, Q. (1994) Singular sets of solutions to elliptic equations. Indiana Univ. Math. J., 43, 983-1002.
-
(1994)
Indiana Univ. Math. J.
, vol.43
, pp. 983-1002
-
-
Han, Q.1
-
17
-
-
44349193375
-
A basic convergence result for conforming adaptive finite elements
-
DOI 10.1142/S0218202508002838, PII S0218202508002838
-
MORIN, P., SIEBERT, K. G. & VEESER, A. (2008) A basic convergence result for conforming adaptive finite elements. Math. Models Methods Appl. Sci., 18, 707-737. (Pubitemid 351730146)
-
(2008)
Mathematical Models and Methods in Applied Sciences
, vol.18
, Issue.5
, pp. 707-737
-
-
Morin, P.1
Siebert, K.G.2
Veeser, A.3
-
18
-
-
0002592744
-
Regularity Results for Elliptic Equations in Lipschitz Domains
-
DOI 10.1006/jfan.1997.3158, PII S002212369793158X
-
SAVARé, G. (1998) Regularity results for elliptic equations in Lipschitz domains. J. Funct. Anal., 152, 176-201. (Pubitemid 128347472)
-
(1998)
Journal of Functional Analysis
, vol.152
, Issue.1
, pp. 176-201
-
-
Savare, G.1
-
19
-
-
27144549033
-
Design of Adaptive Finite Element Software: The Finite Element Toolbox ALBERTA
-
Berlin: Springer
-
SCHMIDT, A. & SIEBERT, K. G. (2005) Design of Adaptive Finite Element Software: The Finite Element Toolbox ALBERTA. Lecture Notes in Computational Science and Engineering, vol. 42. Berlin: Springer.
-
(2005)
Lecture Notes in Computational Science and Engineering
, vol.42
-
-
Schmidt, A.1
Siebert, K.G.2
-
20
-
-
84966200902
-
Finite element interpolation of nonsmooth functions satisfying boundary conditions
-
SCOTT, L. R. & ZHANG, S. (1990) Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput., 54, 483-493.
-
(1990)
Math. Comput.
, vol.54
, pp. 483-493
-
-
Scott, L.R.1
Zhang, S.2
-
21
-
-
79960498931
-
A convergence proof for adaptive finite elements without lower bound
-
SIEBERT, K. G. (2011) A convergence proof for adaptive finite elements without lower bound. IMA J. Numer. Anal., 31, 947-970.
-
(2011)
IMA J. Numer. Anal.
, vol.31
, pp. 947-970
-
-
Siebert, K.G.1
-
22
-
-
34250183086
-
Optimality of a standard adaptive finite element method
-
STEVENSON, R. (2007) Optimality of a standard adaptive finite element method. Found. Comput. Math., 7, 245-269.
-
(2007)
Found. Comput. Math.
, vol.7
, pp. 245-269
-
-
Stevenson, R.1
-
23
-
-
38849110048
-
The completion of locally refined simplicial partitions created by bisection
-
(electronic)
-
STEVENSON, R. (2008) The completion of locally refined simplicial partitions created by bisection. Math. Comput., 77, 227-241 (electronic).
-
(2008)
Math. Comput.
, vol.77
, pp. 227-241
-
-
Stevenson, R.1
-
24
-
-
0003552714
-
-
Prentice-Hall Series in Automatic Computation. Englewood Cliffs NJ: Prentice-Hall
-
STRANG, G. & FIX, G. J. (1973) An Analysis of the Finite Element Method. Prentice-Hall Series in Automatic Computation. Englewood Cliffs, NJ: Prentice-Hall.
-
(1973)
An Analysis of the Finite Element Method
-
-
Strang, G.1
Fix, G.J.2
-
25
-
-
79960487687
-
A posteriori error estimates for the finite element approximation of Steklov eigenvalue problem
-
ZUPPA, C. (2007) A posteriori error estimates for the finite element approximation of Steklov eigenvalue problem. MecÁnica Comput., 26, 724-735.
-
(2007)
MecÁnica Comput.
, vol.26
, pp. 724-735
-
-
Zuppa, C.1
|