-
1
-
-
0001277673
-
Oscillation and stability of linear impulsive delay differential equations
-
J.R. Yan, and A.M. Zhao Oscillation and stability of linear impulsive delay differential equations J. Math. Anal. Appl. 227 1998 187 194
-
(1998)
J. Math. Anal. Appl.
, vol.227
, pp. 187-194
-
-
Yan, J.R.1
Zhao, A.M.2
-
2
-
-
6344254788
-
Existence and global attractivity of positive periodic solutions of functional differential equations with impulses
-
W.T. Li, and H.F. Huo Existence and global attractivity of positive periodic solutions of functional differential equations with impulses Nonlinear Anal. 59 2004 857 877
-
(2004)
Nonlinear Anal.
, vol.59
, pp. 857-877
-
-
Li, W.T.1
Huo, H.F.2
-
3
-
-
24344431618
-
Stability for impulsive delay differential equations
-
J.R. Yan Stability for impulsive delay differential equations Nonlinear Anal. 63 2005 66 80
-
(2005)
Nonlinear Anal.
, vol.63
, pp. 66-80
-
-
Yan, J.R.1
-
4
-
-
40149110506
-
On existence of a globally attractive periodic solution of impulsive delay logarithmic population model
-
DOI 10.1016/j.amc.2007.08.024, PII S009630030700882X
-
J.O. Alzabut, and T. Abdeljawad On existence of a globally attractive periodic solution of impulsive delay logarithmic population model Appl. Math. Comput. 198 2008 463 469 (Pubitemid 351329383)
-
(2008)
Applied Mathematics and Computation
, vol.198
, Issue.1
, pp. 463-469
-
-
Alzabut, J.O.1
Abdeljawad, T.2
-
5
-
-
2342538996
-
Stability theorems and existence results for periodic solutions of nonlinear impulsive delay differential equations with variable coefficients
-
Y.J. Liu, and W.G. Ge Stability theorems and existence results for periodic solutions of nonlinear impulsive delay differential equations with variable coefficients Nonlinear Anal. 57 2004 363 399
-
(2004)
Nonlinear Anal.
, vol.57
, pp. 363-399
-
-
Liu, Y.J.1
Ge, W.G.2
-
6
-
-
0034926733
-
Stability of stochastic interval systems with time delays
-
DOI 10.1016/S0167-6911(00)00103-1, PII S0167691100001031
-
X.R. Mao, and C. Selfridge Stability of stochastic interval systems with time delays Syst. Control Lett. 42 2001 279 290 (Pubitemid 32663814)
-
(2001)
Systems and Control Letters
, vol.42
, Issue.4
, pp. 279-290
-
-
Mao, X.1
Selfridge, C.2
-
7
-
-
36248976012
-
Stability and stabilisation of stochastic differential delay equations
-
DOI 10.1049/iet-cta:20070006
-
X. Mao Stability and stabilisation of stochastic differential delay equations IET Control Theory Appl. 1 2007 1551 1566 (Pubitemid 350136741)
-
(2007)
IET Control Theory and Applications
, vol.1
, Issue.6
, pp. 1551-1566
-
-
Mao, X.1
-
8
-
-
70449458852
-
Stability of linear stochastic differential delay systems under impulsive control
-
S.W. Zhao, J.T. Sun, and H.J. Wu Stability of linear stochastic differential delay systems under impulsive control IET Control Theory Appl. 3 2009 1547 1552
-
(2009)
IET Control Theory Appl.
, vol.3
, pp. 1547-1552
-
-
Zhao, S.W.1
Sun, J.T.2
Wu, H.J.3
-
9
-
-
74249120406
-
Stability analysis of nonlinear stochastic differential delay systems under impulsive control
-
C.X. Li, and J.T. Sun Stability analysis of nonlinear stochastic differential delay systems under impulsive control Phys. Lett. A 374 2010 1154 1158
-
(2010)
Phys. Lett. A
, vol.374
, pp. 1154-1158
-
-
Li, C.X.1
Sun, J.T.2
-
10
-
-
77955473889
-
Stability analysis of a class of stochastic differential delay equations with nonlinear impulsive effects
-
C.X. Li, J.T. Sun, and R.Y. Sun Stability analysis of a class of stochastic differential delay equations with nonlinear impulsive effects J. Franklin Inst. 347 2010 1186 1198
-
(2010)
J. Franklin Inst.
, vol.347
, pp. 1186-1198
-
-
Li, C.X.1
Sun, J.T.2
Sun, R.Y.3
-
11
-
-
71649094514
-
Exponential stability of EulerMaruyama solutions for impulsive stochastic differential equations with delay
-
G.H. Zhao, M.H. Song, and M.Z. Liu Exponential stability of EulerMaruyama solutions for impulsive stochastic differential equations with delay Appl. Math. Comput. 215 2010 3425 3432
-
(2010)
Appl. Math. Comput.
, vol.215
, pp. 3425-3432
-
-
Zhao, G.H.1
Song, M.H.2
Liu, M.Z.3
-
12
-
-
0037408027
-
Global stability of cellular neural networks with constant and variable delays
-
X.M. Li, L.H. Huang, and H.Y. Zhu Global stability of cellular neural networks with constant and variable delays Nonlinear Anal. 53 2003 319 333
-
(2003)
Nonlinear Anal.
, vol.53
, pp. 319-333
-
-
Li, X.M.1
Huang, L.H.2
Zhu, H.Y.3
-
13
-
-
34547502302
-
Global asymptotic stability for a class of nonlinear neural networks with multiple delays
-
Y.Y. Hou, T.L. Liao, and J.J. Yan Global asymptotic stability for a class of nonlinear neural networks with multiple delays Nonlinear Anal. 67 2007 3037 3040
-
(2007)
Nonlinear Anal.
, vol.67
, pp. 3037-3040
-
-
Hou, Y.Y.1
Liao, T.L.2
Yan, J.J.3
-
14
-
-
10744225331
-
Continuous-time additive Hopfield-type neural networks with impulses
-
DOI 10.1016/j.jmaa.2003.10.005
-
H. Akca, R. Alassar, V. Covachev, Z. Covacheva, and E. Al-Zahrani Continuous-time additive Hopfield-type neural networks with impulses J. Math. Anal. Appl. 290 2004 436 451 (Pubitemid 38254184)
-
(2004)
Journal of Mathematical Analysis and Applications
, vol.290
, Issue.2
, pp. 436-451
-
-
Akca, H.1
Alassar, R.2
Covachev, V.3
Covacheva, Z.4
Al-Zahrani, E.5
-
15
-
-
9644255680
-
Global exponential stability of BAM neural networks with delays and impulses
-
Y. Li Global exponential stability of BAM neural networks with delays and impulses Chaos Solitons Fractals 24 2005 279 285
-
(2005)
Chaos Solitons Fractals
, vol.24
, pp. 279-285
-
-
Li, Y.1
-
16
-
-
34249725047
-
Global exponential stability of delayed cellular neural networks with impulses
-
DOI 10.1016/j.neucom.2006.08.005, PII S0925231206003122, Selected papers from the 3rd International Conference on Development and Learning (ICDL 2004)
-
Y. Xia, J. Cao, and S. Cheng Global exponential stability of delayed cellular neural networks with impulses Neurocomputing 70 2007 2495 2501 (Pubitemid 46825357)
-
(2007)
Neurocomputing
, vol.70
, Issue.13-15
, pp. 2495-2501
-
-
Xia, Y.1
Cao, J.2
Sun Cheng, S.3
-
17
-
-
34247125186
-
Global exponential stability of cellular neural networks with mixed delays and impulses
-
DOI 10.1016/j.chaos.2006.03.091, PII S0960077906003201
-
W. Xiong, Q. Zhou, B. Xiao, and Y. Yu Global exponential stability of cellular neural networks with mixed delays and impulses Chaos Solitons fractals 34 2007 896 902 (Pubitemid 46601903)
-
(2007)
Chaos, Solitons and Fractals
, vol.34
, Issue.3
, pp. 896-902
-
-
Xiong, W.1
Zhou, Q.2
Xiao, B.3
Yu, Y.4
-
18
-
-
40849111420
-
Stability analysis of impulsive stochastic CohenGrossberg neural networks with mixed time delays
-
Q.K. Song, and Z.D. Wang Stability analysis of impulsive stochastic CohenGrossberg neural networks with mixed time delays Physica A 387 2008 3314 3326
-
(2008)
Physica A
, vol.387
, pp. 3314-3326
-
-
Song, Q.K.1
Wang, Z.D.2
-
19
-
-
34748841400
-
Exponential stability of impulsive neural networks with time-varying delays
-
DOI 10.1016/j.chaos.2006.05.089, PII S0960077906005169
-
Z. Huang, Q. Yang, and X. Luo Exponential stability of impulsive neural networks with time-varying delays Chaos Solitons fractals 35 2008 770 780 (Pubitemid 47484438)
-
(2008)
Chaos, Solitons and Fractals
, vol.35
, Issue.4
, pp. 770-780
-
-
Huang, Z.-T.1
Yang, Q.-G.2
Luo, X.-s.3
-
21
-
-
44649106892
-
Global exponential stability for impulsive cellular neural networks with time-varying delays
-
Shair Ahmad, and Ivanka M. Stamova Global exponential stability for impulsive cellular neural networks with time-varying delays Nonlinear Anal. 69 2008 786 795
-
(2008)
Nonlinear Anal.
, vol.69
, pp. 786-795
-
-
Ahmad, S.1
Stamova, I.M.2
-
22
-
-
24944498218
-
Exponential stability of stochastic CohenGrossberg neural networks with time-varying delays
-
X.L. Li, and J.D. Cao Exponential stability of stochastic CohenGrossberg neural networks with time-varying delays Lecture Notes in Comput. Sci. 2005 162 167
-
(2005)
Lecture Notes in Comput. Sci.
, pp. 162-167
-
-
Li, X.L.1
Cao, J.D.2
-
23
-
-
33745158646
-
Robust stability for stochastic Hopfield neural networks with time delays
-
Z.D. Wang, H.S. Shu, J.A. Fang, and X.H. Liu Robust stability for stochastic Hopfield neural networks with time delays Nonlinear Anal. RWA 7 2006 1119 1128
-
(2006)
Nonlinear Anal. RWA
, vol.7
, pp. 1119-1128
-
-
Wang, Z.D.1
Shu, H.S.2
Fang, J.A.3
Liu, X.H.4
-
24
-
-
34249685553
-
Delay-dependent stability for uncertain stochastic neural networks with time-varying delay
-
DOI 10.1016/j.physa.2007.04.020, PII S0378437107003718
-
H. Huang, and G. Feng Delay-dependent stability for uncertain stochastic neural networks with time-varying delay Physica A 381 2007 93 103 (Pubitemid 46829678)
-
(2007)
Physica A: Statistical Mechanics and its Applications
, vol.381
, Issue.1-2
, pp. 93-103
-
-
Huang, H.1
Feng, G.2
-
25
-
-
35548961848
-
Pth moment exponential stability of stochastic Cohen-Grossberg neural networks with time-varying delays
-
DOI 10.1007/s11063-007-9051-z
-
E.W. Zhu, H.M. Zhang, Y. Wang, J.Z. Zou, Z. Yu, and Z.T. Hou pth moment exponential stability of stochastic CohenGrossberg neural networks with time-varying delays Neural Process. Lett. 26 2007 191 200 (Pubitemid 350005974)
-
(2007)
Neural Processing Letters
, vol.26
, Issue.3
, pp. 191-200
-
-
Zhu, E.1
Zhang, H.2
Wang, Y.3
Zou, J.4
Yu, Z.5
Hou, Z.6
-
26
-
-
34047244923
-
Novel robust stability criteria for uncertain stochastic Hopfield neural networks with time-varying delays
-
DOI 10.1016/j.nonrwa.2006.06.010, PII S1468121806000848
-
J.H. Zhang, P. Shi, and J.Q. Qiu Novel robust stability criteria for uncertain stochastic Hopfield neural networks with time-varying delays Nonlinear Anal. RWA 8 2007 1349 1357 (Pubitemid 46551830)
-
(2007)
Nonlinear Analysis: Real World Applications
, vol.8
, Issue.4
, pp. 1349-1357
-
-
Zhang, J.1
Shi, P.2
Qiu, J.3
-
27
-
-
40849113616
-
Delay-dependent asymptotic stability for stochastic delayed recurrent neural networks with time varying delays
-
DOI 10.1016/j.amc.2007.08.053, PII S0096300307009186
-
R. Rakkiyappan, and P. Balasubramaniam Delay-dependent asymptotic stability for stochastic delayed recurrent neural networks with time varying delays Appl. Math. Comput. 198 2008 526 533 (Pubitemid 351400727)
-
(2008)
Applied Mathematics and Computation
, vol.198
, Issue.2
, pp. 526-533
-
-
Rakkiyappan, R.1
Balasubramaniam, P.2
-
28
-
-
38649129784
-
Mean square exponential stability of uncertain stochastic delayed neural networks
-
W.H. Chen, and X.M. Lu Mean square exponential stability of uncertain stochastic delayed neural networks Phys. Lett. A 372 2008 1061 1069
-
(2008)
Phys. Lett. A
, vol.372
, pp. 1061-1069
-
-
Chen, W.H.1
Lu, X.M.2
-
29
-
-
67349200344
-
Mean square exponential stability of uncertain stochastic neural networks with time-varying delay
-
Y.Y. Wu, Y.Q. Wu, and Y.G. Chen Mean square exponential stability of uncertain stochastic neural networks with time-varying delay Neurocomputing 72 2009 2379 2384
-
(2009)
Neurocomputing
, vol.72
, pp. 2379-2384
-
-
Wu, Y.Y.1
Wu, Y.Q.2
Chen, Y.G.3
-
30
-
-
55549140132
-
Further results on mean square exponential stability of uncertain stochastic delayed neural networks
-
J.J. Yu, K.J. Zhang, and S.M. Fei Further results on mean square exponential stability of uncertain stochastic delayed neural networks Commun. Nonlinear Sci. Numer. Simul. 14 2009 1582 1589
-
(2009)
Commun. Nonlinear Sci. Numer. Simul.
, vol.14
, pp. 1582-1589
-
-
Yu, J.J.1
Zhang, K.J.2
Fei, S.M.3
-
31
-
-
74449083447
-
Improved delay-dependent exponential stability for uncertain stochastic neural networks with time-varying delays
-
O.M. Kwon, S.M. Lee, and Ju H. Park Improved delay-dependent exponential stability for uncertain stochastic neural networks with time-varying delays Phys. Lett. A 374 2010 1232 1241
-
(2010)
Phys. Lett. A
, vol.374
, pp. 1232-1241
-
-
Kwon, O.M.1
Lee, S.M.2
Park, J.H.3
-
32
-
-
67349167079
-
State estimation for coupled uncertain stochastic networks with missing measurements and time-varying delays: The discrete-time case
-
J.L. Liang, Z.D. Wang, and X.H. Liu State estimation for coupled uncertain stochastic networks with missing measurements and time-varying delays: the discrete-time case IEEE Trans. Neural Netw. 5 2009 781 793
-
(2009)
IEEE Trans. Neural Netw.
, vol.5
, pp. 781-793
-
-
Liang, J.L.1
Wang, Z.D.2
Liu, X.H.3
-
33
-
-
67949117118
-
Stability and synchronization of discrete-time Markovian jumping neural networks with mixed mode-dependent time-delays
-
Y.R. Liu, Z.D. Wang, and J.L. Liang Stability and synchronization of discrete-time Markovian jumping neural networks with mixed mode-dependent time-delays IEEE Trans. Neural Netw. 7 2009 1102 1116
-
(2009)
IEEE Trans. Neural Netw.
, vol.7
, pp. 1102-1116
-
-
Liu, Y.R.1
Wang, Z.D.2
Liang, J.L.3
-
34
-
-
73949136715
-
Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time-delays
-
Z.D. Wang, Y. Wang, and Y.R. Liu Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time-delays IEEE Trans. Neural Netw. 1 2010 11 25
-
(2010)
IEEE Trans. Neural Netw.
, vol.1
, pp. 11-25
-
-
Wang, Z.D.1
Wang, Y.2
Liu, Y.R.3
-
35
-
-
64049091914
-
Stability analysis for impulsive CohenGrossberg neural networks with time-varying delays and distributed delays
-
K.L. Li Stability analysis for impulsive CohenGrossberg neural networks with time-varying delays and distributed delays Nonlinear Anal. RWA 10 2009 2784 2798
-
(2009)
Nonlinear Anal. RWA
, vol.10
, pp. 2784-2798
-
-
Li, K.L.1
-
36
-
-
67349212179
-
Exponential p-stability of impulsive stochastic neural networks with mixed delays
-
L.G. Xu, and D.Y. Xu Exponential p-stability of impulsive stochastic neural networks with mixed delays Chaos Solitons Fractals 41 2009 263 272
-
(2009)
Chaos Solitons Fractals
, vol.41
, pp. 263-272
-
-
Xu, L.G.1
Xu, D.Y.2
-
37
-
-
57649104873
-
Exponential p-stability of impulsive stochastic ChoenGrossberg neural networks with mixed delays
-
X.H. Wang, Q.Y. Guo, and D.Y. Xu Exponential p-stability of impulsive stochastic ChoenGrossberg neural networks with mixed delays Math. Comput. Simulation 79 2009 1698 1710
-
(2009)
Math. Comput. Simulation
, vol.79
, pp. 1698-1710
-
-
Wang, X.H.1
Guo, Q.Y.2
Xu, D.Y.3
|