메뉴 건너뛰기




Volumn 5, Issue 1-4, 2011, Pages 1-13

Review of the methods for handling missing data in longitudinal data analysis

Author keywords

Complete case; Imputation; Longitudinal analysis; Missing value; Pattern mixture model; Selection model

Indexed keywords


EID: 79953751653     PISSN: 13128876     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Review
Times cited : (75)

References (15)
  • 1
    • 0004093524 scopus 로고    scopus 로고
    • Sage Publications Inc, California
    • P. Allison, Missing Data, Sage Publications Inc, California, 2001
    • (2001) Missing Data
    • Allison, P.1
  • 2
    • 9244225646 scopus 로고    scopus 로고
    • Assessment of Relative Improvement Due to Weights Within Generalized Estimating Equations Framework for Incomplete Clinical Trials Data
    • H. Demirtas, Assessment of Relative Improvement Due to Weights Within Generalized Estimating Equations Framework for Incomplete Clinical Trials Data, Journal of Biopharmaceutical Statistics, 14, 1085-1098,2004
    • (2004) Journal of Biopharmaceutical Statistics , vol.14 , pp. 1085-1098
    • Demirtas, H.1
  • 3
    • 0042066687 scopus 로고    scopus 로고
    • On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out
    • H. Demirtas & J. L. Schafer, On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out, Statistics in Medicine, 22, 2003
    • (2003) Statistics in Medicine , vol.22
    • Demirtas, H.1    Schafer, J.L.2
  • 4
    • 2342452152 scopus 로고    scopus 로고
    • Methods for handling dropouts in longitudinal clinical trials
    • G.M. Fitzmaurice, Methods for handling dropouts in longitudinal clinical trials, Statistica Neerlandica, 57, 75-99, 2003
    • (2003) Statistica Neerlandica , vol.57 , pp. 75-99
    • Fitzmaurice, G.M.1
  • 6
    • 0002105479 scopus 로고    scopus 로고
    • Application of Random-Effects pattern-Mixture models for Missing Data in Longitudinal Studies
    • D. Hedeker & R. D. Gibbons, Application of Random-Effects pattern-Mixture models for Missing Data in Longitudinal Studies, Psychological Methods, 2, 64-78, 1997
    • (1997) Psychological Methods , vol.2 , pp. 64-78
    • Hedeker, D.1    Gibbons, R.D.2
  • 8
    • 34548549316 scopus 로고    scopus 로고
    • Analysis of binary outcomes with missing data: missing=smoking, last observation carried forward, and a little multiple imputation
    • D. Hedeker, R. J. Mermelstein & H. Demirtas, Analysis of binary outcomes with missing data: missing=smoking, last observation carried forward, and a little multiple imputation, Addiction, 102, 1564-1573, 2007
    • (2007) Addiction , vol.102 , pp. 1564-1573
    • Hedeker, D.1    Mermelstein, R.J.2    Demirtas, H.3
  • 9
    • 77649173768 scopus 로고
    • Longitudinal Data Analysis Using Generalized Linear Models
    • K.-Y. Liang and S. L. Zeger, Longitudinal Data Analysis Using Generalized Linear Models, Biometrika, 73, 13-22, 1986
    • (1986) Biometrika , vol.73 , pp. 13-22
    • Liang, K.-Y.1    Zeger, S.L.2
  • 10
    • 84950452119 scopus 로고
    • Modeling the drop-out mechanism in repeated-measures studies
    • R.J.A Little, Modeling the drop-out mechanism in repeated-measures studies, Journal of the American Statistical Association, 90, 1112-1121,1995
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 1112-1121
    • Little R.J.A1
  • 12
    • 37748999261 scopus 로고    scopus 로고
    • Missing data: A comparison of neural network and expectation maximization techniques
    • F. V. Nelwamondo, S. Mohamed & T. Marwala, Missing data: A comparison of neural network and expectation maximization techniques, Current Science, 93, 2007
    • (2007) Current Science , vol.93
    • Nelwamondo, F.V.1    Mohamed, S.2    Marwala, T.3
  • 13
    • 0017133178 scopus 로고
    • Inference and Missing Data
    • D. B. Rubin, Inference and Missing Data, Biometrika, 63, 581-592, 1976
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 14
    • 85047673373 scopus 로고    scopus 로고
    • Missing Data: Our View of the State of the Art
    • J. L. Schafer & J. W. Graham, Missing Data: Our View of the State of the Art, Psychological Methods, 7, 147-177, 2002
    • (2002) Psychological Methods , vol.7 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.