메뉴 건너뛰기




Volumn 61, Issue 8, 2011, Pages 1935-1938

Numerical solutions of Duffing equations involving both integral and non-integral forcing terms

Author keywords

Duffing equation; Improved variational iteration method; Integral and non integral forcing terms

Indexed keywords

DUFFING EQUATIONS; FORCING TERMS; IMPROVED METHODS; IMPROVED VARIATIONAL ITERATION METHOD; INITIAL SOLUTION; INTEGRAL AND NON-INTEGRAL FORCING TERMS; NON INTEGRALS; NUMERICAL RESULTS; NUMERICAL SOLUTION; UNKNOWN PARAMETERS; VARIATIONAL ITERATION METHOD;

EID: 79953739600     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2010.07.053     Document Type: Article
Times cited : (11)

References (17)
  • 1
    • 49649112516 scopus 로고    scopus 로고
    • Extended versions of quasilinearization for the forced Duffing equation
    • B. Ahmad, and B. Alghamdi Extended versions of quasilinearization for the forced Duffing equation Comm. Appl. Nonlinear Anal. 4 14 2007 67 75
    • (2007) Comm. Appl. Nonlinear Anal. , vol.4 , Issue.14 , pp. 67-75
    • Ahmad, B.1    Alghamdi, B.2
  • 2
    • 0036854658 scopus 로고    scopus 로고
    • A shooting approach to layers and chaos in a forced Duffing equation
    • S.B. Ai, and S.P. Hastings A shooting approach to layers and chaos in a forced Duffing equation J. Differential Equations 185 2002 389 436
    • (2002) J. Differential Equations , vol.185 , pp. 389-436
    • Ai, S.B.1    Hastings, S.P.2
  • 3
    • 0035882855 scopus 로고    scopus 로고
    • The lower bounds of T-periodic solutions for the forced Duffing equation
    • C.W. Wang The lower bounds of T-periodic solutions for the forced Duffing equation J. Math. Anal. Appl. 260 2001 507 516
    • (2001) J. Math. Anal. Appl. , vol.260 , pp. 507-516
    • Wang, C.W.1
  • 4
    • 84966205375 scopus 로고
    • An infinite class of periodic solutions of periodically perturbed Duffing equation at resonance
    • T. Ding An infinite class of periodic solutions of periodically perturbed Duffing equation at resonance Proc. Amer. Math. Soc. 86 1982 47 54
    • (1982) Proc. Amer. Math. Soc. , vol.86 , pp. 47-54
    • Ding, T.1
  • 5
    • 0002629428 scopus 로고    scopus 로고
    • Solvability of the forced Duffing equation at resonance
    • C.L. Tang Solvability of the forced Duffing equation at resonance J. Math. Anal. Appl. 219 1998 110 124
    • (1998) J. Math. Anal. Appl. , vol.219 , pp. 110-124
    • Tang, C.L.1
  • 6
    • 43649094597 scopus 로고    scopus 로고
    • Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions
    • DOI 10.1016/j.nonrwa.2007.05.005, PII S1468121807000946
    • B. Ahmad, A. Alsaedi, and B. Alghamdi Analytic approximation of solutions of the forced Dung equation with integral boundary conditions Anal. Real World Appl. 9 2008 1727 1740 (Pubitemid 351685811)
    • (2008) Nonlinear Analysis: Real World Applications , vol.9 , Issue.4 , pp. 1727-1740
    • Ahmad, B.1    Alsaedi, A.2    Alghamdi, B.S.3
  • 7
    • 50349098961 scopus 로고    scopus 로고
    • Existence of approximate solutions of the forced Dung equation with discontinuous type integral boundary conditions
    • B. Ahmad, and A. Alsaedi Existence of approximate solutions of the forced Dung equation with discontinuous type integral boundary conditions Anal. Real World Appl. 10 2009 358 367
    • (2009) Anal. Real World Appl. , vol.10 , pp. 358-367
    • Ahmad, B.1    Alsaedi, A.2
  • 8
    • 49649115744 scopus 로고    scopus 로고
    • Approximation of solutions of the nonlinear Duffing equation involving both integral and non-integral forcing terms with separated boundary conditions
    • B. Ahmad, and B.S. Alghamdi Approximation of solutions of the nonlinear Duffing equation involving both integral and non-integral forcing terms with separated boundary conditions Comput. Phys. Comm. 179 2008 409 416
    • (2008) Comput. Phys. Comm. , vol.179 , pp. 409-416
    • Ahmad, B.1    Alghamdi, B.S.2
  • 9
    • 68849124353 scopus 로고    scopus 로고
    • Solution of the Duffing equation involving both integral and non-integral forcing terms
    • H.M. Yao Solution of the Duffing equation involving both integral and non-integral forcing terms Comput. Phys. Comm. 180 2009 1481 1488
    • (2009) Comput. Phys. Comm. , vol.180 , pp. 1481-1488
    • Yao, H.M.1
  • 11
    • 0000092673 scopus 로고    scopus 로고
    • Variational iteration method-a kind of non-linear analytical technique: Some examples
    • J.H. He Variational iteration method-a kind of non-linear analytical technique: some examples Internat. J. Non-Linear Mech. 34 1999 699 708
    • (1999) Internat. J. Non-Linear Mech. , vol.34 , pp. 699-708
    • He, J.H.1
  • 12
    • 33645972898 scopus 로고    scopus 로고
    • Some asymptotic methods for strongly nonlinear equations
    • J.H. He Some asymptotic methods for strongly nonlinear equations Internat. J. Modern Phys. B 20 2006 1141 1199
    • (2006) Internat. J. Modern Phys. B , vol.20 , pp. 1141-1199
    • He, J.H.1
  • 13
    • 34250668369 scopus 로고    scopus 로고
    • Variational iteration methodsome recent results and new interpretations
    • J.H. He Variational iteration methodsome recent results and new interpretations J. Comput. Appl. Math. 207 1 2007 3 17
    • (2007) J. Comput. Appl. Math. , vol.207 , Issue.1 , pp. 3-17
    • He, J.H.1
  • 14
    • 34748870677 scopus 로고    scopus 로고
    • Variational iteration method: New development and applications
    • J.H. He, and X.H. Wu Variational iteration method: new development and applications Comput. Math. Appl. 54 2007 881 894
    • (2007) Comput. Math. Appl. , vol.54 , pp. 881-894
    • He, J.H.1    Wu, X.H.2
  • 15
    • 74449084990 scopus 로고    scopus 로고
    • The variational iteration method which should be followed
    • J.H. He, G.C. Wu, and F. Austin The variational iteration method which should be followed Nonlinear Sci. Lett. A 1 1 2010 1 30
    • (2010) Nonlinear Sci. Lett. A , vol.1 , Issue.1 , pp. 1-30
    • He, J.H.1    Wu, G.C.2    Austin, F.3
  • 17
    • 68649119584 scopus 로고    scopus 로고
    • Solving nonlinear multi-point boundary value problems by combining homotopy perturbation and variational iteration methods
    • F.Z. Geng, and M.G. Cui Solving nonlinear multi-point boundary value problems by combining homotopy perturbation and variational iteration methods Int. J. Nonlinear Sci. Numer. Simul. 10 5 2009 597 600
    • (2009) Int. J. Nonlinear Sci. Numer. Simul. , vol.10 , Issue.5 , pp. 597-600
    • Geng, F.Z.1    Cui, M.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.