메뉴 건너뛰기




Volumn 38, Issue 8, 2011, Pages 10420-10424

Traffic safety forecasting method by particle swarm optimization and support vector machine

Author keywords

Evaluation indexes; Influencing factors; Support vector machine; Traffic safety forecasting

Indexed keywords

BP NEURAL NETWORKS; DEVELOPMENT TENDENCY; EVALUATION INDEX; FORECASTING ABILITY; INFLUENCING FACTOR; TRAFFIC ACCIDENTS; TRAFFIC SAFETY; TRAFFIC SAFETY FORECASTING;

EID: 79953727225     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2011.02.066     Document Type: Article
Times cited : (38)

References (12)
  • 1
    • 41349089755 scopus 로고    scopus 로고
    • Real-time prediction of order flowtimes using support vector regression
    • DOI 10.1016/j.cor.2007.01.026, PII S0305054807000330
    • A. Alenezi, S.A. Moses, and T.B. Trafalis Real-time prediction of order flowtimes using support vector regression Computers & Operations Research 35 11 2008 3489 3503 (Pubitemid 351447309)
    • (2008) Computers and Operations Research , vol.35 , Issue.11 , pp. 3489-3503
    • Alenezi, A.1    Moses, S.A.2    Trafalis, T.B.3
  • 3
    • 1942505351 scopus 로고    scopus 로고
    • Typical patterns in road-traffic accidents during driver training: An explorative Swedish national study
    • H.-Y. Berg, N.P. Gregersen, and L. Laflamme Typical patterns in road-traffic accidents during driver training: An explorative Swedish national study Accident Analysis and Prevention 36 4 2004 603 608
    • (2004) Accident Analysis and Prevention , vol.36 , Issue.4 , pp. 603-608
    • Berg, H.-Y.1    Gregersen, N.P.2    Laflamme, L.3
  • 4
    • 0034326359 scopus 로고    scopus 로고
    • Traffic accident statistics and risk perceptions in Japan and the United States
    • H. Hayakawa, P.S. Fischbeck, and B. Fischhoff Traffic accident statistics and risk perceptions in Japan and the United States Accident Analysis and Prevention 32 6 2000 827 835
    • (2000) Accident Analysis and Prevention , vol.32 , Issue.6 , pp. 827-835
    • Hayakawa, H.1    Fischbeck, P.S.2    Fischhoff, B.3
  • 5
    • 2942607444 scopus 로고    scopus 로고
    • Prediction of accidents at full green and green arrow traffic lights in Switzerland with the aid of configuration-specific features
    • M. Hubacher, and R. Allenbach Prediction of accidents at full green and green arrow traffic lights in Switzerland with the aid of configuration-specific features Accident Analysis and Prevention 36 5 2004 739 747
    • (2004) Accident Analysis and Prevention , vol.36 , Issue.5 , pp. 739-747
    • Hubacher, M.1    Allenbach, R.2
  • 6
    • 33947266512 scopus 로고    scopus 로고
    • Development of a soft sensor for a batch distillation column using support vector regression techniques
    • DOI 10.1205/cherd05026
    • P. Jain, I. Rahman, and B.D. Kulkarni Development of a soft sensor for a batch distillation column using support vector regression techniques Chemical Engineering Research and Design 85 2 2007 283 287 (Pubitemid 46431748)
    • (2007) Chemical Engineering Research and Design , vol.85 , Issue.A2 , pp. 283-287
    • Jain, P.1    Rahman, I.2    Kulkarni, B.D.3
  • 7
    • 54949083428 scopus 로고    scopus 로고
    • Analysis of traffic accident size for Korean highway using structural equation models
    • J.-Y. Lee, J.-H. Chung, and B. Son Analysis of traffic accident size for Korean highway using structural equation models Accident Analysis and Prevention 40 6 2008 1955 1963
    • (2008) Accident Analysis and Prevention , vol.40 , Issue.6 , pp. 1955-1963
    • Lee, J.-Y.1    Chung, J.-H.2    Son, B.3
  • 8
    • 58349112535 scopus 로고    scopus 로고
    • Identifying core sets of discriminatory features using particle swarm optimization
    • W. Pedrycz, B.J. Park, and N.J. Pizzi Identifying core sets of discriminatory features using particle swarm optimization Expert Systems with Applications 36 3 2009 4610 4616
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 4610-4616
    • Pedrycz, W.1    Park, B.J.2    Pizzi, N.J.3
  • 9
    • 54549091989 scopus 로고    scopus 로고
    • Support vector regression methodology for storm surge predictions
    • S. Rajasekaran, S. Gayathri, and T.-L. Lee Support vector regression methodology for storm surge predictions Ocean Engineering 35 16 2008 1578 1587
    • (2008) Ocean Engineering , vol.35 , Issue.16 , pp. 1578-1587
    • Rajasekaran, S.1    Gayathri, S.2    Lee, T.-L.3
  • 10
    • 0033724101 scopus 로고    scopus 로고
    • A BP-neural network predictor model for plastic injection molding process
    • B.H.M. Sadeghi A BP-neural network predictor model for plastic injection molding process Journal of Materials Processing Technology 103 3 2000 411 416
    • (2000) Journal of Materials Processing Technology , vol.103 , Issue.3 , pp. 411-416
    • Sadeghi, B.H.M.1
  • 12
    • 33751236810 scopus 로고    scopus 로고
    • A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem
    • DOI 10.1016/j.ejor.2005.12.024, PII S0377221705008453
    • M.F. Tasgetiren, Y.-C. Liang, M. Sevkli, and G. Gencyilmaz A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem European Journal of Operational Research 177 3 2007 1930 1947 (Pubitemid 44780934)
    • (2007) European Journal of Operational Research , vol.177 , Issue.3 , pp. 1930-1947
    • Tasgetiren, M.F.1    Liang, Y.-C.2    Sevkli, M.3    Gencyilmaz, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.