메뉴 건너뛰기




Volumn 1, Issue NOV, 2007, Pages

Irregular persistent activity induced by synaptic excitatory feedback

Author keywords

Integrate and fire neuron; Network model; Prefrontal cortex; Short term depression; Working memory

Indexed keywords

INTEGRATE-AND-FIRE NEURONS; NETWORK MODELING; PREFRONTAL CORTEX; SHORT-TERM DEPRESSION; WORKING MEMORY;

EID: 79953688651     PISSN: 16625188     EISSN: None     Source Type: Journal    
DOI: 10.3389/neuro.10/005.2007     Document Type: Article
Times cited : (37)

References (35)
  • 1
    • 33644971385 scopus 로고    scopus 로고
    • Representations of the first hitting time density of an Ornstein-Uhlenbeck process
    • Alili, L., Patie, P., and Pedersen, J. (2005). Representations of the first hitting time density of an Ornstein-Uhlenbeck process. Stoch. Models 21, 967-980.
    • (2005) Stoch. Models , vol.21 , pp. 967-980
    • Alili, L.1    Patie, P.2    Pedersen, J.3
  • 2
    • 0030947941 scopus 로고    scopus 로고
    • Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex
    • Amit, D. J., and Brunel, N. (1997). Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb. Cortex 7, 237-252.
    • (1997) Cereb. Cortex , vol.7 , pp. 237-252
    • Amit, D.J.1    Brunel, N.2
  • 3
    • 36149028967 scopus 로고
    • Quantitative study of attractor neural network retrieving at low spike rates I: Substrate-spikes, rates and neuronal gain
    • Amit, D. J., and Tsodyks, M. V. (1991). Quantitative study of attractor neural network retrieving at low spike rates I: Substrate-spikes, rates and neuronal gain. Network 2, 259-274.
    • (1991) Network , vol.2 , pp. 259-274
    • Amit, D.J.1    Tsodyks, M.V.2
  • 4
    • 0034623811 scopus 로고    scopus 로고
    • The contribution of noise to contrast invariance of orientation tuning in cat visual cortex
    • Anderson, J. S., Lampl, I., Gillespie, D. C., and Ferster, D. (2000). The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. Science 290, 1968-1972.
    • (2000) Science , vol.290 , pp. 1968-1972
    • Anderson, J.S.1    Lampl, I.2    Gillespie, D.C.3    Ferster, D.4
  • 5
    • 0041730763 scopus 로고    scopus 로고
    • Persistent activity and the single cell f-I curve in a cortical network model
    • Brunel, N. (2000). Persistent activity and the single cell f-I curve in a cortical network model. Network 11, 261-280.
    • (2000) Network , vol.11 , pp. 261-280
    • Brunel, N.1
  • 6
    • 33749604716 scopus 로고    scopus 로고
    • Network models of memory
    • C. Chow, B. Gutkin, D. Hansel, C. Meunier, J. Dalibard, eds. (Elsevier, London)
    • Brunel, N. (2004). Network models of memory. In Methods and Models in Neurophysics, Les Houches 2003, C. Chow, B. Gutkin, D. Hansel, C. Meunier, J. Dalibard, eds. (Elsevier, London).
    • (2004) Methods and Models in Neurophysics, Les Houches 2003
    • Brunel, N.1
  • 7
    • 0034814469 scopus 로고    scopus 로고
    • Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition
    • Brunel, N., and Wang, X. J. (2001). Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J. Comput. Neurosci. 11, 63-85.
    • (2001) J. Comput. Neurosci. , vol.11 , pp. 63-85
    • Brunel, N.1    Wang, X.J.2
  • 8
    • 0031762840 scopus 로고    scopus 로고
    • A model of visuospatial short-term memory in prefrontal cortex: Recurrent network and cellular bistability
    • Camperi, M., and Wang, X.-J. (1998). A model of visuospatial short-term memory in prefrontal cortex: recurrent network and cellular bistability. J. Comput. Neurosci. 5, 383-405.
    • (1998) J. Comput. Neurosci. , vol.5 , pp. 383-405
    • Camperi, M.1    Wang, X.-J.2
  • 9
    • 0032526975 scopus 로고    scopus 로고
    • Synaptic depression and the temporal response characteristics of V1 cells
    • Chance, F. S., Nelson, S. B., and Abbott, L. F. (1998). Synaptic depression and the temporal response characteristics of V1 cells. J. Neurosci. 18, 4785-4799.
    • (1998) J. Neurosci. , vol.18 , pp. 4785-4799
    • Chance, F.S.1    Nelson, S.B.2    Abbott, L.F.3
  • 10
    • 0033811553 scopus 로고    scopus 로고
    • Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model
    • Compte, A., Brunel, N., Goldman-Rakic P. S., and Wang X.-J. (2000). Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cere. Cortex 10, 910-923.
    • (2000) Cere. Cortex , vol.10 , pp. 910-923
    • Compte, A.1    Brunel, N.2    Goldman-Rakic, P.S.3    Wang, X.-J.4
  • 12
    • 0024574176 scopus 로고
    • Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex
    • Funahashi, S., Bruce, C. J., and Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J. Neurophysiol. 61, 331-349.
    • (1989) J. Neurophysiol. , vol.61 , pp. 331-349
    • Funahashi, S.1    Bruce, C.J.2    Goldman-Rakic, P.S.3
  • 13
    • 0015222118 scopus 로고
    • Neuron activity related to short-term memory
    • Fuster, J. M., and Alexander, G. (1971). Neuron activity related to short-term memory. Science 173, 652-654.
    • (1971) Science , vol.173 , pp. 652-654
    • Fuster, J.M.1    Alexander, G.2
  • 14
    • 0019505236 scopus 로고
    • Inferotemporal neurons distinguish and retain behaviourally relevant features of visual stimuli
    • Fuster, J. M., and Jervey, J. P. (1981). Inferotemporal neurons distinguish and retain behaviourally relevant features of visual stimuli. Science 212, 952-955.
    • (1981) Science , vol.212 , pp. 952-955
    • Fuster, J.M.1    Jervey, J.P.2
  • 15
    • 0028938076 scopus 로고
    • Cellular basis of working memory
    • Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron 14, 477-485.
    • (1995) Neuron , vol.14 , pp. 477-485
    • Goldman-Rakic, P.S.1
  • 16
    • 35949005624 scopus 로고
    • Stochastic Runge-Kutta algorithms I White noise
    • Honeycutt, R. L. (1992). Stochastic Runge-Kutta algorithms. I. White noise. Phys. Rev. A 45, 600-603.
    • (1992) Phys. Rev. A , vol.45 , pp. 600-603
    • Honeycutt, R.L.1
  • 17
    • 0023812211 scopus 로고
    • Neuronal correlate of visual associative long-term memory in the primate temporal cortex
    • Miyashita, Y. (1988). Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature 335, 817-820.
    • (1988) Nature , vol.335 , pp. 817-820
    • Miyashita, Y.1
  • 18
    • 21544454657 scopus 로고    scopus 로고
    • Learning in realistic networks of spiking neurons and spike-driven plastic synapses
    • Mongillo, G., Curti, E., Romani, S., and Amit, D. J. (2005). Learning in realistic networks of spiking neurons and spike-driven plastic synapses. Eur. J. Neurosci. 21, 3143-3160.
    • (2005) Eur. J. Neurosci. , vol.21 , pp. 3143-3160
    • Mongillo, G.1    Curti, E.2    Romani, S.3    Amit, D.J.4
  • 19
    • 0037456572 scopus 로고    scopus 로고
    • Orientation and direction selectivity of synaptic inputs in visual cortical neurons: A diversity of combinations produces spike tuning
    • Monier, C., Chavane, F., Baudot, P., Graham, L. J., and Fregnac, Y. (2003). Orientation and direction selectivity of synaptic inputs in visual cortical neurons: a diversity of combinations produces spike tuning. Neuron 37, 663-680.
    • (2003) Neuron , vol.37 , pp. 663-680
    • Monier, C.1    Chavane, F.2    Baudot, P.3    Graham, L.J.4    Fregnac, Y.5
  • 20
    • 0029082829 scopus 로고
    • Mnemonic firing of neurons in the monkey temporal pole during a visual recognition memory task
    • Nakamura, K., and Kubota, K. (1995). Mnemonic firing of neurons in the monkey temporal pole during a visual recognition memory task. J. Neurophysiol. 74, 162-178.
    • (1995) J. Neurophysiol. , vol.74 , pp. 162-178
    • Nakamura, K.1    Kubota, K.2
  • 21
    • 0242648889 scopus 로고    scopus 로고
    • Ph.D. Thesis, Universidad Autónoma de Madrid
    • Renart, A. (2000). Multi-modular memory systems. Ph.D. Thesis, Universidad Autónoma de Madrid.
    • (2000) Multi-modular memory systems
    • Renart, A.1
  • 22
    • 0037566546 scopus 로고    scopus 로고
    • Robust spatial working memory through homeostatic synaptic scaling in heterogenous cortical networks
    • Renart, A., Moreno, R., and Wang, X. J. (2003). Robust spatial working memory through homeostatic synaptic scaling in heterogenous cortical networks. Neuron 38, 473-485.
    • (2003) Neuron , vol.38 , pp. 473-485
    • Renart, A.1    Moreno, R.2    Wang, X.J.3
  • 23
    • 33845992188 scopus 로고    scopus 로고
    • Mean-driven and fluctuation-driven persistent activity in recurrent networks
    • Renart, A., Moreno-Bote R., Wang, X.-J., and Parga, N. (2007). Mean-driven and fluctuation-driven persistent activity in recurrent networks. Neural Comput. 19, 1-46.
    • (2007) Neural Comput. , vol.19 , pp. 1-46
    • Renart, A.1    Moreno-Bote, R.2    Wang, X.-J.3    Parga, N.4
  • 25
    • 33646536945 scopus 로고    scopus 로고
    • Mean-field analysis of selective persistent activity in presence of short-term synaptic depression
    • Romani, S., Amit, D. J., and Mongillo, G. (2006). Mean-field analysis of selective persistent activity in presence of short-term synaptic depression. J. Comput. Neurosci. 20, 201-217.
    • (2006) J. Comput. Neurosci. , vol.20 , pp. 201-217
    • Romani, S.1    Amit, D.J.2    Mongillo, G.3
  • 27
    • 0033213820 scopus 로고    scopus 로고
    • Temporally correlated inputs to leaky integrate-and-fire models can reproduce spiking statistics of cortical neurons
    • Sakai, Y., Funahashi, S., and Shinomoto S. (1999). Temporally correlated inputs to leaky integrate-and-fire models can reproduce spiking statistics of cortical neurons. Neural Netw. 12, 1181-1190.
    • (1999) Neural Netw. , vol.12 , pp. 1181-1190
    • Sakai, Y.1    Funahashi, S.2    Shinomoto, S.3
  • 28
    • 0033561846 scopus 로고    scopus 로고
    • The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex
    • Shinomoto, S., Sakai, Y., and Funahashi S. (1999). The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex. Neural Comput. 11, 935-951.
    • (1999) Neural Comput. , vol.11 , pp. 935-951
    • Shinomoto, S.1    Sakai, Y.2    Funahashi, S.3
  • 29
    • 0031182938 scopus 로고    scopus 로고
    • Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell
    • Troyer, T. W., and Miller, K. D. (1997). Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell. Neural Comput. 9, 971-983.
    • (1997) Neural Comput. , vol.9 , pp. 971-983
    • Troyer, T.W.1    Miller, K.D.2
  • 30
    • 0031018015 scopus 로고    scopus 로고
    • The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability
    • Tsodyks, M. V., and Markram, H. (1997). The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl. Acad. Sci. USA 94, 719-723.
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 719-723
    • Tsodyks, M.V.1    Markram, H.2
  • 31
  • 32
    • 0000794781 scopus 로고
    • Rapid state switching in balanced cortical network models
    • Tsodyks, M. V., and Sejnowski, T. (1995). Rapid state switching in balanced cortical network models. Network 6, 111-124.
    • (1995) Network , vol.6 , pp. 111-124
    • Tsodyks, M.V.1    Sejnowski, T.2
  • 33
    • 0029835892 scopus 로고    scopus 로고
    • Chaos in neuronal networks with balanced excitatory and inhibitory activity
    • van Vreeswijk, C., and Sompolinsky, H. (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274, 1724-1726.
    • (1996) Science , vol.274 , pp. 1724-1726
    • van Vreeswijk, C.1    Sompolinsky, H.2
  • 34
    • 0032528729 scopus 로고    scopus 로고
    • Chaotic balanced state in a model of cortical circuits
    • van Vreeswijk, C., and Sompolinsky, H. (1998). Chaotic balanced state in a model of cortical circuits. Neural Comput. 10, 1321-1371.
    • (1998) Neural Comput. , vol.10 , pp. 1321-1371
    • van Vreeswijk, C.1    Sompolinsky, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.