메뉴 건너뛰기




Volumn , Issue , 2010, Pages 501-505

Data mining based Network Intrusion Detection System: A survey

Author keywords

Clustering; Hidden Makov models; Knowledge discovery and data mining cup; Network Intrusion Detection System; Signature based IDS

Indexed keywords

COMPUTER CRIME; DATA MINING; INTRUSION DETECTION; SURVEYS;

EID: 79953319913     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/978-90-481-3662-9_86     Document Type: Conference Paper
Times cited : (23)

References (38)
  • 3
    • 84878960273 scopus 로고    scopus 로고
    • Brugger, T(June 9, 2004) University of California, Davis Data Mining Methods for Network Intrusion Detection 1.56
    • Brugger, T(June 9, 2004) University of California, Davis Data Mining Methods for Network Intrusion Detection 1.56.
  • 4
    • 0348132918 scopus 로고    scopus 로고
    • Mining fuzzy association rules in databases
    • Kuok C., Fu A., Wong M.,(2001) "Mining fuzzy association rules in databases" SIGMOD Record 17 (1) 41-46.
    • (2001) SIGMOD Record , vol.17 , Issue.1 , pp. 41-46
    • Kuok, C.1    Fu, A.2    Wong, M.3
  • 5
    • 0242540448 scopus 로고    scopus 로고
    • Mining intrusion detection alarms for actionable knowledge
    • Julisch, K. & Dacier, M. (2002). Mining Intrusion Detection Alarms for Actionable Knowledge. Proc. of SIGKDD02, 366-375.
    • (2002) Proc. of SIGKDD02 , pp. 366-375
    • Julisch, K.1    Dacier, M.2
  • 8
    • 84878962112 scopus 로고    scopus 로고
    • Immunizing computer networks: Getting all the machines in your network to fight the hacker disease
    • Oakland, CA. IEEE Computer Society Press
    • Hofmeyr, S. A. and S. Forrest (1999). Immunizing computer networks: Getting all the machines in your network to fight the hacker disease. In Proc. of the 1999 IEEE Symp. on Security and Privacy, Oakland, CA. IEEE Computer Society Press.
    • (1999) Proc. of the 1999 IEEE Symp. on Security and Privacy
    • Hofmeyr, S.A.1    Forrest, S.2
  • 10
    • 84885774862 scopus 로고    scopus 로고
    • A framework for constructing features and models for intrusion detection systems
    • Lee, W. and S. J. Stolfo (2000). A framework for constructing features and models for intrusion detection systems. Information and System Security 3 (4), 227-261.
    • (2000) Information and System Security , vol.3 , Issue.4 , pp. 227-261
    • Lee, W.1    Stolfo, S.J.2
  • 15
    • 0033667059 scopus 로고    scopus 로고
    • Comparing local search with respect to genetic evolution to detect intrusion in computer networks
    • (16-19 July). La Jolla, CA, IEEE Press
    • Neri, F. (2000a, 16-19 July). Comparing local search with respect to genetic evolution to detect intrusion in computer networks. In Proc. of the 2000 Congress on Evolutionary Computation CEC00, La Jolla, CA, pp. 238- 243. IEEE Press.
    • (2000) Proc. of the 2000 Congress on Evolutionary Computation CEC00 , pp. 238-243
    • Neri, F.1
  • 17
    • 0142063808 scopus 로고    scopus 로고
    • Parzen-window network intrusion detectors
    • (11-15 August). Quebec City, Canada, IEEE Computer Society
    • Yeung, D.-Y. And C. Chow (2002, 11-15 August). Parzen-window network intrusion detectors. In Proc. of the Sixteenth International Conference on Pattern Recognition, Volume 4, Quebec City, Canada, pp. 385-388. IEEE Computer Society.
    • (2002) Proc. of the Sixteenth International Conference on Pattern Recognition , vol.4 , pp. 385-388
    • Yeung, D.-Y.1    Chow, C.2
  • 21
    • 0036588773 scopus 로고    scopus 로고
    • Incorporating soft computing techniques into a probabilitistic intrusion detection system
    • Cho, S. (2002). Incorporating Soft Computing Techniques into a Probabilitistic Intrusion Detection System. IEEE Transactions on Systems, Man and Cybernetics 32(2): 154-160.
    • (2002) IEEE Transactions on Systems, Man and Cybernetics , vol.32 , Issue.2 , pp. 154-160
    • Cho, S.1
  • 24
    • 0242456797 scopus 로고    scopus 로고
    • ADMIT: Anomaly-based data mining for intrusions
    • Sequeira, K. & Zaki, M. (2002). ADMIT: Anomaly-based Data Mining for Intrusions. Proc. of SIGKDD02, 386-395.
    • (2002) Proc. of SIGKDD02 , pp. 386-395
    • Sequeira, K.1    Zaki, M.2
  • 27
    • 27144452309 scopus 로고    scopus 로고
    • A comparative study of RNN for outlier detection in data mining
    • Williams, G., Baxter, R., He, H. & Hawkins, S. (2002). A Comparative Study of RNN for Outlier Detection in Data Mining. Proc. of ICDM02, 709-712.
    • (2002) Proc. of ICDM02 , pp. 709-712
    • Williams, G.1    Baxter, R.2    He, H.3    Hawkins, S.4
  • 28
    • 84878980976 scopus 로고    scopus 로고
    • A data mining framework for building intrusion detection models (1This research is supported in part by grants from DARPA (F30602-96-1-0311) and NSF (IRI-96-32225 and CDA-96-25374)
    • submitted to the
    • Lee W. Salvatore J. Stolfo Kui W. Mok.(1999) A Data Mining Framework for Building Intrusion Detection Models (1This research is supported in part by grants from DARPA (F30602-96-1-0311) and NSF (IRI-96-32225 and CDA-96-25374).submitted to the 1999 IEEE Symposium on Security and Privacy.
    • (1999) 1999 IEEE Symposium on Security and Privacy
    • Salvatore, L.W.1    Kui, J.S.2    Mok, W.3
  • 29
    • 0037400054 scopus 로고    scopus 로고
    • An empirical study of two approaches to sequence learning for anomaly detection
    • Lane, T. & Brodley, C. (2003). An Empirical Study of Two Approaches to Sequence Learning for Anomaly Detection. Machine Learning 51:73-107.
    • (2003) Machine Learning , vol.51 , pp. 73-107
    • Lane, T.1    Brodley, C.2
  • 32
    • 0038223829 scopus 로고    scopus 로고
    • Minnesota university, [Accessed 15November 2007]
    • Minnesota university, Minnesota Intrusion Detection System.[Online] Available from: www.cs.umn.edu/research/MINDS [Accessed 15November 2007] .
    • Minnesota Intrusion Detection System
  • 34
    • 66149159123 scopus 로고    scopus 로고
    • Novel attack detection using fuzzy logic and data mining
    • Idris, N, Shanmugam, B, (2006) Novel Attack Detection Using Fuzzy Logic and Data Mining. Security and Management: 26-31.
    • (2006) Security and Management , pp. 26-31
    • Idris, N.1    Shanmugam, B.2
  • 37
    • 33646811831 scopus 로고    scopus 로고
    • Agent-based network intrusion detection system using data mining approaches, Information Technology and Applications, 2005
    • Publication Date: 4-7 July vol.1, ISBN: 0-7695-2316-1
    • Cheung-Leung Lui Tak-Chung Fu Ting-Yee Cheung Agent-based network intrusion detection system using data mining approaches, Information Technology and Applications, 2005. ICITA 2005.Publication Date: 4-7 July 2005: 131-136 vol.1, ISBN: 0-7695-2316-1.
    • (2005) ICITA 2005 , pp. 131-136
    • Lui, C.-L.1    Fu, T.-C.2    Cheung, T.-Y.3
  • 38
    • 84879761171 scopus 로고    scopus 로고
    • Flow based network intrusion detection system using hardware-accelerated netflow probes
    • (July). abriela Krčmařová, Petr Sojka (Eds.)
    • Bartoš K, Grill M, Krmíček V, Rehák M, Celeda P,(July 2008) Flow Based Network Intrusion Detection System using Hardware-Accelerated NetFlow Probes, abriela Krčmařová, Petr Sojka (Eds.): CESNET Conference 2008, Proceedings, pp. 49-56.
    • (2008) CESNET Conference 2008, Proceedings , pp. 49-56
    • Bartoš, K.1    Grill, M.2    Krmíček, V.3    Rehák, M.4    Celeda, P.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.