-
1
-
-
84878955430
-
-
Zhu, Dan, Premkumar, G, Zhang, Xiaoning, Chu, Chao-Hsien (2001) A comparison of alternative methods. [Online] Available from: http://findarticles. com/p/articles/mi-qa3713/is-200110/ai-n8954240.
-
(2001)
A Comparison of Alternative Methods
-
-
Zhu, D.1
Premkumar, G.2
Zhang, X.3
Chu, C.-H.4
-
3
-
-
84878960273
-
-
Brugger, T(June 9, 2004) University of California, Davis Data Mining Methods for Network Intrusion Detection 1.56
-
Brugger, T(June 9, 2004) University of California, Davis Data Mining Methods for Network Intrusion Detection 1.56.
-
-
-
-
4
-
-
0348132918
-
Mining fuzzy association rules in databases
-
Kuok C., Fu A., Wong M.,(2001) "Mining fuzzy association rules in databases" SIGMOD Record 17 (1) 41-46.
-
(2001)
SIGMOD Record
, vol.17
, Issue.1
, pp. 41-46
-
-
Kuok, C.1
Fu, A.2
Wong, M.3
-
5
-
-
0242540448
-
Mining intrusion detection alarms for actionable knowledge
-
Julisch, K. & Dacier, M. (2002). Mining Intrusion Detection Alarms for Actionable Knowledge. Proc. of SIGKDD02, 366-375.
-
(2002)
Proc. of SIGKDD02
, pp. 366-375
-
-
Julisch, K.1
Dacier, M.2
-
7
-
-
0031258214
-
Computer immunology
-
October
-
Forrest, S., S. A. Hofmeyr, and A. Somayaji (1997, October). Computer immunology. Communications of the ACM 40 (10), 88-96.
-
(1997)
Communications of the ACM
, vol.40
, Issue.10
, pp. 88-96
-
-
Forrest, S.1
Hofmeyr, S.A.2
Somayaji, A.3
-
8
-
-
84878962112
-
Immunizing computer networks: Getting all the machines in your network to fight the hacker disease
-
Oakland, CA. IEEE Computer Society Press
-
Hofmeyr, S. A. and S. Forrest (1999). Immunizing computer networks: Getting all the machines in your network to fight the hacker disease. In Proc. of the 1999 IEEE Symp. on Security and Privacy, Oakland, CA. IEEE Computer Society Press.
-
(1999)
Proc. of the 1999 IEEE Symp. on Security and Privacy
-
-
Hofmeyr, S.A.1
Forrest, S.2
-
10
-
-
84885774862
-
A framework for constructing features and models for intrusion detection systems
-
Lee, W. and S. J. Stolfo (2000). A framework for constructing features and models for intrusion detection systems. Information and System Security 3 (4), 227-261.
-
(2000)
Information and System Security
, vol.3
, Issue.4
, pp. 227-261
-
-
Lee, W.1
Stolfo, S.J.2
-
11
-
-
70349696809
-
-
editor Anoop Singhal, Springer
-
Chandola V, Eilertson E, Ertoz L, Simon G, and Kumar V, Data Mining for Cyber Security,(2006) Data Warehousing and Data Mining Techniques for Computer Security, editor Anoop Singhal, Springer.
-
(2006)
Data Warehousing and Data Mining Techniques for Computer Security
-
-
Chandola, V.1
Eilertson, E.2
Ertoz, L.3
Simon, G.4
Kumar, V.5
-
12
-
-
84878965456
-
-
Submitted for publication, August 1998
-
Lee, W. K. W. Mok, and S. J. Stolfo(1998). Mining sequential patterns: Techniques, visualization, and applications. Submitted for publication, August 1998.1-9.
-
(1998)
Mining Sequential Patterns: Techniques, Visualization, and Applications
, pp. 1-9
-
-
Lee1
Mok, W.K.W.2
Stolfo, S.J.3
-
13
-
-
24944527971
-
MINDS - Minnesota intrusion detection system
-
Ertöz, L, Eilertson, E, Aleksandar Lazarevic, Pang-Ning Tan-, Vipin Kumar (2004) MINDS - Minnesota Intrusion Detection System, Technical report at university of Minnesota 1.21.
-
(2004)
Technical Report at University of Minnesota 1.21
-
-
Ertöz, L.1
Eilertson, E.2
Lazarevic, A.3
Tan, P.-N.4
Kumar, V.5
-
15
-
-
0033667059
-
Comparing local search with respect to genetic evolution to detect intrusion in computer networks
-
(16-19 July). La Jolla, CA, IEEE Press
-
Neri, F. (2000a, 16-19 July). Comparing local search with respect to genetic evolution to detect intrusion in computer networks. In Proc. of the 2000 Congress on Evolutionary Computation CEC00, La Jolla, CA, pp. 238- 243. IEEE Press.
-
(2000)
Proc. of the 2000 Congress on Evolutionary Computation CEC00
, pp. 238-243
-
-
Neri, F.1
-
17
-
-
0142063808
-
Parzen-window network intrusion detectors
-
(11-15 August). Quebec City, Canada, IEEE Computer Society
-
Yeung, D.-Y. And C. Chow (2002, 11-15 August). Parzen-window network intrusion detectors. In Proc. of the Sixteenth International Conference on Pattern Recognition, Volume 4, Quebec City, Canada, pp. 385-388. IEEE Computer Society.
-
(2002)
Proc. of the Sixteenth International Conference on Pattern Recognition
, vol.4
, pp. 385-388
-
-
Yeung, D.-Y.1
Chow, C.2
-
21
-
-
0036588773
-
Incorporating soft computing techniques into a probabilitistic intrusion detection system
-
Cho, S. (2002). Incorporating Soft Computing Techniques into a Probabilitistic Intrusion Detection System. IEEE Transactions on Systems, Man and Cybernetics 32(2): 154-160.
-
(2002)
IEEE Transactions on Systems, Man and Cybernetics
, vol.32
, Issue.2
, pp. 154-160
-
-
Cho, S.1
-
22
-
-
84964411176
-
Real time data mining- based intrusion detection
-
(June), Anaheim, CA, IEEE Computer Society
-
Lee, W., S. J. Stolfo, P. K. Chan, E. Eskin, W. Fan, M. Miller, S. Hershkop, and J. Zhang (2001, June). Real time data mining- based intrusion detection. In Proc. Second DARPA Information Survivability Conference and Exposition, Anaheim, CA, pp. 85-100. IEEE Computer Society.
-
(2001)
Proc. Second DARPA Information Survivability Conference and Exposition
, pp. 85-100
-
-
Lee, W.1
Stolfo, S.J.2
Chan, P.K.3
Eskin, E.4
Fan, W.5
Miller, M.6
Hershkop, S.7
Zhang, J.8
-
24
-
-
0242456797
-
ADMIT: Anomaly-based data mining for intrusions
-
Sequeira, K. & Zaki, M. (2002). ADMIT: Anomaly-based Data Mining for Intrusions. Proc. of SIGKDD02, 386-395.
-
(2002)
Proc. of SIGKDD02
, pp. 386-395
-
-
Sequeira, K.1
Zaki, M.2
-
26
-
-
84864859588
-
Outlier detection using Replicator neural networks
-
Hawkins, S., He, H., Williams, G. & Baxter, R. (2002). Outlier Detection Using Replicator Neural Networks. Proc. of DaWaK2002, 170-180.
-
(2002)
Proc. of DaWaK2002
, pp. 170-180
-
-
Hawkins, S.1
He, H.2
Williams, G.3
Baxter, R.4
-
27
-
-
27144452309
-
A comparative study of RNN for outlier detection in data mining
-
Williams, G., Baxter, R., He, H. & Hawkins, S. (2002). A Comparative Study of RNN for Outlier Detection in Data Mining. Proc. of ICDM02, 709-712.
-
(2002)
Proc. of ICDM02
, pp. 709-712
-
-
Williams, G.1
Baxter, R.2
He, H.3
Hawkins, S.4
-
28
-
-
84878980976
-
A data mining framework for building intrusion detection models (1This research is supported in part by grants from DARPA (F30602-96-1-0311) and NSF (IRI-96-32225 and CDA-96-25374)
-
submitted to the
-
Lee W. Salvatore J. Stolfo Kui W. Mok.(1999) A Data Mining Framework for Building Intrusion Detection Models (1This research is supported in part by grants from DARPA (F30602-96-1-0311) and NSF (IRI-96-32225 and CDA-96-25374).submitted to the 1999 IEEE Symposium on Security and Privacy.
-
(1999)
1999 IEEE Symposium on Security and Privacy
-
-
Salvatore, L.W.1
Kui, J.S.2
Mok, W.3
-
29
-
-
0037400054
-
An empirical study of two approaches to sequence learning for anomaly detection
-
Lane, T. & Brodley, C. (2003). An Empirical Study of Two Approaches to Sequence Learning for Anomaly Detection. Machine Learning 51:73-107.
-
(2003)
Machine Learning
, vol.51
, pp. 73-107
-
-
Lane, T.1
Brodley, C.2
-
31
-
-
0345389037
-
Data mining for network intrusion detection: How to get started
-
Bloedorn E, Alan D. Christiansen, William Hill, Clement Skorupka, Lisa M. Talbot, and Jonathan Tivel(2002). Data mining for network intrusion detection: How to get started. Technical report, The MITRE Corporation, 2001. 1-9.
-
(2001)
Technical Report, the MITRE Corporation
, pp. 1-9
-
-
Bloedorn, E.1
Christiansen, A.D.2
Hill, W.3
Skorupka, C.4
Talbot, L.M.5
Tivel, J.6
-
32
-
-
0038223829
-
-
Minnesota university, [Accessed 15November 2007]
-
Minnesota university, Minnesota Intrusion Detection System.[Online] Available from: www.cs.umn.edu/research/MINDS [Accessed 15November 2007] .
-
Minnesota Intrusion Detection System
-
-
-
33
-
-
48149103562
-
An intrusion detection system based on multiple level hybrid classifier using enhanced C4.5
-
4-6 Jan.
-
Rajeswari, L. Prema; Kannan, A., (4-6 Jan. 2008) An Intrusion Detection System Based on Multiple Level Hybrid Classifier using Enhanced C4.5, Communications and Networking, 2008. ICSCN apos, International Conference, Page(s):75 - 79.
-
(2008)
Communications and Networking, 2008. ICSCN Apos, International Conference
, pp. 75-79
-
-
Rajeswari, L.P.1
Kannan, A.2
-
34
-
-
66149159123
-
Novel attack detection using fuzzy logic and data mining
-
Idris, N, Shanmugam, B, (2006) Novel Attack Detection Using Fuzzy Logic and Data Mining. Security and Management: 26-31.
-
(2006)
Security and Management
, pp. 26-31
-
-
Idris, N.1
Shanmugam, B.2
-
35
-
-
70449558168
-
Modeling an intrusion detection system using data mining and genetic algorithms based on fuzzy logic
-
July
-
Prasad G, Dhanalakshmi Y, Dr.Vijaya V Kumar Dr Babu R, Modeling An Intrusion Detection System Using Data Mining And Genetic Algorithms Based On Fuzzy Logic, IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 2008.
-
(2008)
IJCSNS International Journal of Computer Science and Network Security
, vol.8
, Issue.7
-
-
Prasad, G.1
Dhanalakshmi, Y.2
Kumar, V.V.3
Babu, R.4
-
37
-
-
33646811831
-
Agent-based network intrusion detection system using data mining approaches, Information Technology and Applications, 2005
-
Publication Date: 4-7 July vol.1, ISBN: 0-7695-2316-1
-
Cheung-Leung Lui Tak-Chung Fu Ting-Yee Cheung Agent-based network intrusion detection system using data mining approaches, Information Technology and Applications, 2005. ICITA 2005.Publication Date: 4-7 July 2005: 131-136 vol.1, ISBN: 0-7695-2316-1.
-
(2005)
ICITA 2005
, pp. 131-136
-
-
Lui, C.-L.1
Fu, T.-C.2
Cheung, T.-Y.3
-
38
-
-
84879761171
-
Flow based network intrusion detection system using hardware-accelerated netflow probes
-
(July). abriela Krčmařová, Petr Sojka (Eds.)
-
Bartoš K, Grill M, Krmíček V, Rehák M, Celeda P,(July 2008) Flow Based Network Intrusion Detection System using Hardware-Accelerated NetFlow Probes, abriela Krčmařová, Petr Sojka (Eds.): CESNET Conference 2008, Proceedings, pp. 49-56.
-
(2008)
CESNET Conference 2008, Proceedings
, pp. 49-56
-
-
Bartoš, K.1
Grill, M.2
Krmíček, V.3
Rehák, M.4
Celeda, P.5
|