메뉴 건너뛰기




Volumn 321, Issue 1, 2011, Pages 176-182

A fast, robust, and accurate operator splitting method for phase-field simulations of crystal growth

Author keywords

A1. Multigrid method; A1. Operator splitting; A1. Phase field simulation; A2. Crystal growth

Indexed keywords

A1. PHASE-FIELD SIMULATION; A2. CRYSTAL GROWTH; CLOSED FORM SOLUTIONS; DENDRITIC GROWTH; EULER'S METHOD; FAST SOLVERS; GROWTH SIMULATION; HEAT EQUATION; MULTIGRID METHODS; NUMERICAL EXPERIMENTS; OPERATOR SPLITTING METHOD; OPERATOR SPLITTING TECHNIQUE; OPERATOR-SPLITTING; PHASE FIELDS; PHASE-FIELD SIMULATION; SIMULATION RESULT; SOURCE TERMS; THREE DIMENSIONAL SPACE;

EID: 79953249318     PISSN: 00220248     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jcrysgro.2011.02.042     Document Type: Article
Times cited : (60)

References (43)
  • 1
    • 23144458829 scopus 로고    scopus 로고
    • Nonlinear morphological control of growing crystals
    • DOI 10.1016/j.physd.2005.06.021, PII S0167278905002691
    • S. Li, J.S. Lowengrub, and P.H. Leo Nonlinear morphological control of growing crystals Phys. D 208 2005 209 219 (Pubitemid 41085167)
    • (2005) Physica D: Nonlinear Phenomena , vol.208 , Issue.3-4 , pp. 209-219
    • Li, S.1    Lowengrub, J.S.2    Leo, P.H.3
  • 2
    • 3242861084 scopus 로고
    • Boundary integral formulation of the two-dimensional symmetric model of dendritic growth
    • D.I. Meiron Boundary integral formulation of the two-dimensional symmetric model of dendritic growth Phys. D 23 1986 329 339
    • (1986) Phys. D , vol.23 , pp. 329-339
    • Meiron, D.I.1
  • 3
    • 0000655661 scopus 로고
    • Crystal growth and dendlritic solidification
    • J.A. Sethian, and J. Strain Crystal growth and dendlritic solidification J. Comput. Phys. 98 1992 231 253
    • (1992) J. Comput. Phys. , vol.98 , pp. 231-253
    • Sethian, J.A.1    Strain, J.2
  • 4
    • 0000362889 scopus 로고
    • A boundary integral approach to unstable solidification
    • J. Strain A boundary integral approach to unstable solidification J. Comput. Phys. 85 1989 342 389
    • (1989) J. Comput. Phys. , vol.85 , pp. 342-389
    • Strain, J.1
  • 5
    • 33846164772 scopus 로고    scopus 로고
    • A cellular automaton technique for modelling of a binary dendritic growth with convection
    • DOI 10.1016/j.apm.2006.04.004, PII S0307904X06000953
    • D. Li, R. Li, and P. Zhang A cellular automaton technique for modelling of a binary dendritic growth with convection Appl. Math. Modelling 31 2007 971 982 (Pubitemid 46076081)
    • (2007) Applied Mathematical Modelling , vol.31 , Issue.6 , pp. 971-982
    • Li, D.1    Li, R.2    Zhang, P.3
  • 6
    • 70350685733 scopus 로고    scopus 로고
    • A cellular automaton model for dendrite growth in magnesium alloy AZ91
    • H. Yin, and S.D. Felicelli A cellular automaton model for dendrite growth in magnesium alloy AZ91 Modelling Simul. Mater. Sci. Eng. 17 2009 075011
    • (2009) Modelling Simul. Mater. Sci. Eng. , vol.17 , pp. 075011
    • Yin, H.1    Felicelli, S.D.2
  • 7
    • 0034948466 scopus 로고    scopus 로고
    • A modified cellular automaton model for the simulation of dendritic growth in solidification of alloys
    • M.F. Zhu, and C.P. Hong A modified cellular automaton model for the simulation of dendritic growth in solidification of alloys ISIJ Int. 41 2001 436 445 (Pubitemid 32585934)
    • (2001) ISIJ International , vol.41 , Issue.5 , pp. 436-445
    • Zhu, M.F.1    Hong, C.P.2
  • 8
    • 42749105282 scopus 로고    scopus 로고
    • Modified cellular automaton model for the prediction of dendritic growth with melt convection
    • M.F. Zhu, S.Y. Lee, and C.P. Hong Modified cellular automaton model for the prediction of dendritic growth with melt convection Phys. Rev. E 69 2004 061610
    • (2004) Phys. Rev. e , vol.69 , pp. 061610
    • Zhu, M.F.1    Lee, S.Y.2    Hong, C.P.3
  • 9
    • 0037055751 scopus 로고    scopus 로고
    • Numerical simulation of dendritic solidification with convection: Two-dimensional geometry
    • N. Al-Rawahi, and G. Tryggvason Numerical simulation of dendritic solidification with convection: two-dimensional geometry J. Comput. Phys. 180 2002 471 496
    • (2002) J. Comput. Phys. , vol.180 , pp. 471-496
    • Al-Rawahi, N.1    Tryggvason, G.2
  • 10
    • 0013260814 scopus 로고    scopus 로고
    • Competition between kinetic and surface tension anisotropy in dendritic growth
    • T. Ihle Competition between kinetic and surface tension anisotropy in dendritic growth Eur. Phys. J. B 16 2000 337 344
    • (2000) Eur. Phys. J. B , vol.16 , pp. 337-344
    • Ihle, T.1
  • 11
    • 0029684784 scopus 로고    scopus 로고
    • A front-tracking method for dendritic solidification
    • DOI 10.1006/jcph.1996.0011
    • D. Juric, and G. Tryggvason A front-tracking method for dendritic solidification J. Comput. Phys. 123 1996 127 148 (Pubitemid 126161380)
    • (1996) Journal of Computational Physics , vol.123 , Issue.1 , pp. 127-148
    • Juric, D.1    Tryggvason, G.2
  • 14
    • 0002631224 scopus 로고    scopus 로고
    • A simple level set method for solving Stefan problem
    • DOI 10.1006/jcph.1997.5721, PII S0021999197957211
    • S. Chen, B. Merriman, S. Osher, and P. Smereka A simple level set method for solving Stefan problem J. Comput. Phys. 135 1997 8 29 (Pubitemid 127343379)
    • (1997) Journal of Computational Physics , vol.135 , Issue.1 , pp. 8-29
    • Chen, S.1    Merriman, B.2    Osher, S.3    Smereka, P.4
  • 15
    • 0042164092 scopus 로고    scopus 로고
    • A level set approach for the numerical simulation of dendritic growth
    • F. Gibou, R. Fedkiw, R. Caflisch, and S. Osher A level set approach for the numerical simulation of dendritic growth J. Sci. Comput. 19 2002 183 199
    • (2002) J. Sci. Comput. , vol.19 , pp. 183-199
    • Gibou, F.1    Fedkiw, R.2    Caflisch, R.3    Osher, S.4
  • 16
    • 0034239346 scopus 로고    scopus 로고
    • Computation of dendritic microstructures using a level set method
    • Y.-T. Kim, N. Goldenfeld, and J. Dantzig Computation of dendritic microstructures using a level set method Phys. Rev. E 62 2000 2471 2474
    • (2000) Phys. Rev. e , vol.62 , pp. 2471-2474
    • Kim, Y.-T.1    Goldenfeld, N.2    Dantzig, J.3
  • 17
    • 33749511248 scopus 로고    scopus 로고
    • Parallelization of a level set method for simulating dendritic growth
    • DOI 10.1016/j.jpdc.2006.02.005, PII S0743731506000244
    • K. Wang, A. Chang, L.V. Kale, and J.A. Dantzig Parallelization of a level set method for simulating dendritic growth J. Parallel Distrib. Comput. 66 2006 1379 1386 (Pubitemid 44528206)
    • (2006) Journal of Parallel and Distributed Computing , vol.66 , Issue.11 , pp. 1379-1386
    • Wang, K.1    Chang, A.2    Kale, L.V.3    Dantzig, J.A.4
  • 18
    • 0001073230 scopus 로고    scopus 로고
    • Multiscale finite-difference-diffusion-Monte-Carlo method for simulating dendritic solidification
    • M. Plapp, and A. Karma Multiscale finite-difference-diffusion-Monte-Carlo method for simulating dendritic solidification J. Comput. Phys. 165 2000 592 619
    • (2000) J. Comput. Phys. , vol.165 , pp. 592-619
    • Plapp, M.1    Karma, A.2
  • 19
    • 49549083517 scopus 로고    scopus 로고
    • Simulation of dendritic growth into an undercooled melt using kinetic Monte Carlo techniques
    • T.P. Schulze Simulation of dendritic growth into an undercooled melt using kinetic Monte Carlo techniques Phys. Rev. E 78 2008 020601(R)
    • (2008) Phys. Rev. e , vol.78
    • Schulze, T.P.1
  • 20
    • 33646973938 scopus 로고
    • Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations
    • G. Caginalp Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations Phys. Rev. A 39 1989 5887 5896
    • (1989) Phys. Rev. A , vol.39 , pp. 5887-5896
    • Caginalp, G.1
  • 21
    • 59749090672 scopus 로고    scopus 로고
    • Efficient adaptive three-dimensional phase-field simulation of dendritic crystal growth from various supercoolings using rescaling
    • C.C. Chen, and C.W. Lan Efficient adaptive three-dimensional phase-field simulation of dendritic crystal growth from various supercoolings using rescaling J. Cryst. Growth 311 2009 702 706
    • (2009) J. Cryst. Growth , vol.311 , pp. 702-706
    • Chen, C.C.1    Lan, C.W.2
  • 22
    • 58149401036 scopus 로고    scopus 로고
    • Adaptive phase field simulation of dendritic crystal growth in a forced flow: 2D vs. 3D morphologies
    • C.C. Chen, Y.L. Tsai, and C.W. Lan Adaptive phase field simulation of dendritic crystal growth in a forced flow: 2D vs. 3D morphologies Int. J. Heat Mass Transfer 52 2009 1158 1166
    • (2009) Int. J. Heat Mass Transfer , vol.52 , pp. 1158-1166
    • Chen, C.C.1    Tsai, Y.L.2    Lan, C.W.3
  • 24
    • 0035473973 scopus 로고    scopus 로고
    • Phase field model for three-dimensional dendritic growth with fluid flow
    • J.-H. Jeong, N. Goldenfeld, and J.A. Dantzig Phase field model for three-dimensional dendritic growth with fluid flow Phys. Rev. E 64 2001 041602
    • (2001) Phys. Rev. e , vol.64 , pp. 041602
    • Jeong, J.-H.1    Goldenfeld, N.2    Dantzig, J.A.3
  • 25
    • 0001323702 scopus 로고    scopus 로고
    • Three-dimensional dendrite-tip morphology at low undercooling
    • A. Karma, Y.H. Lee, and M. Plapp Three-dimensional dendrite-tip morphology at low undercooling Phys. Rev. E 61 2000 3996 4006
    • (2000) Phys. Rev. e , vol.61 , pp. 3996-4006
    • Karma, A.1    Lee, Y.H.2    Plapp, M.3
  • 26
    • 4243643071 scopus 로고    scopus 로고
    • Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics
    • A. Karma, and W.-J. Rappel Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics Phys. Rev. E 53 1996 R3017 R3020
    • (1996) Phys. Rev. e , vol.53
    • Karma, A.1    Rappel, W.-J.2
  • 28
    • 34249817369 scopus 로고
    • Modeling and numerical simulations of dendritic crystal growth
    • R. Kobayashi Modeling and numerical simulations of dendritic crystal growth Phys. D 63 1993 410 423
    • (1993) Phys. D , vol.63 , pp. 410-423
    • Kobayashi, R.1
  • 29
    • 1842576356 scopus 로고    scopus 로고
    • Efficient computation of dendritic microstructures using adaptive mesh refinement
    • N. Provatas, N. Goldenfeld, and J. Dantzig Efficient computation of dendritic microstructures using adaptive mesh refinement Phys. Rev. Lett. 80 1998 3308 3311 (Pubitemid 128621787)
    • (1998) Physical Review Letters , vol.80 , Issue.15 , pp. 3308-3311
    • Provatas, N.1    Goldenfeld, N.2    Dantzig, J.3
  • 30
    • 0000945296 scopus 로고    scopus 로고
    • Adaptive mesh refinement computation of solidification microstructures using dynamic data structures
    • N. Provatas, N. Goldenfeld, and J. Dantzig Adaptive mesh refinement computation of solidification microstructures using dynamic data structures J. Comput. Phys. 148 1999 265 290
    • (1999) J. Comput. Phys. , vol.148 , pp. 265-290
    • Provatas, N.1    Goldenfeld, N.2    Dantzig, J.3
  • 31
    • 42749106989 scopus 로고    scopus 로고
    • Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion
    • J.C. Ramirez, C. Beckermann, A. Karma, and H.-J. Diepers Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion Phys. Rev. E 69 2004 051607
    • (2004) Phys. Rev. e , vol.69 , pp. 051607
    • Ramirez, J.C.1    Beckermann, C.2    Karma, A.3    Diepers, H.-J.4
  • 32
    • 34547516043 scopus 로고    scopus 로고
    • A fully implicit, fully adaptive time and space discretisation method for phase-field simulation of binary alloy solidification
    • J. Rosam, P.K. Jimack, and A. Mullis A fully implicit, fully adaptive time and space discretisation method for phase-field simulation of binary alloy solidification J. Comput. Phys. 225 2007 1271 1287
    • (2007) J. Comput. Phys. , vol.225 , pp. 1271-1287
    • Rosam, J.1    Jimack, P.K.2    Mullis, A.3
  • 33
    • 23144461754 scopus 로고    scopus 로고
    • A simple approach toward quantitative phase field simulation for dilute-alloy solidification
    • DOI 10.1016/j.jcrysgro.2005.05.052, PII S0022024805006408
    • C.J. Shih, M.H. Lee, and C.W. Lan A simple approach toward quantitative phase field simulation for dilute-alloy solidification J. Cryst. Growth 282 2005 515 524 (Pubitemid 41085150)
    • (2005) Journal of Crystal Growth , vol.282 , Issue.3-4 , pp. 515-524
    • Shih, C.J.1    Lee, M.H.2    Lan, C.W.3
  • 34
    • 3342947407 scopus 로고    scopus 로고
    • Phase-field simulations of dendritic crystal growth in a forced flow
    • X. Tong, C. Beckermann, A. Karma, and Q. Li Phase-field simulations of dendritic crystal growth in a forced flow Phys. Rev. E 63 2001 061601
    • (2001) Phys. Rev. e , vol.63 , pp. 061601
    • Tong, X.1    Beckermann, C.2    Karma, A.3    Li, Q.4
  • 35
    • 0030210763 scopus 로고    scopus 로고
    • Algorithms for phase field computation of the dendritic operating state at large supercoolings
    • DOI 10.1006/jcph.1996.0161
    • S.-L. Wang, and R.F. Sekerka Algorithms for phase field computation of the dendritic operating state at large supercoolings J. Comput. Phys. 127 1996 110 117 (Pubitemid 126162330)
    • (1996) Journal of Computational Physics , vol.127 , Issue.1 , pp. 110-117
    • Wang, S.-L.1    Sekerka, R.F.2
  • 36
    • 0029254965 scopus 로고
    • Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method
    • J.A. Warren, and W.J. Boettinger Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method Acta Metall. Mater. 43 1995 689 703
    • (1995) Acta Metall. Mater. , vol.43 , pp. 689-703
    • Warren, J.A.1    Boettinger, W.J.2
  • 37
    • 33748889143 scopus 로고    scopus 로고
    • A Numerical procedure for solving 2D phase-field model problems
    • DOI 10.1016/j.jcp.2006.03.007, PII S002199910600132X
    • Y. Xu, J.M. McDonough, and K.A. Tagavi A numerical procedure for solving 2D phase-field model problems J. Comput. Phys. 218 2006 770 793 (Pubitemid 44426536)
    • (2006) Journal of Computational Physics , vol.218 , Issue.2 , pp. 770-793
    • Xu, Y.1    McDonough, J.M.2    Tagavi, K.A.3
  • 38
    • 0037042092 scopus 로고    scopus 로고
    • A pseudo-front tracking technique for the modelling of solidification microstructures in multi-component alloys
    • DOI 10.1016/S1359-6454(01)00442-6, PII S1359645401004426
    • A. Jacot, and M. Rappaz A pseudo-front tracking technique for the modelling of solidification microstructures in multi-component alloys Acta Mater. 50 2002 1909 1926 (Pubitemid 34524211)
    • (2002) Acta Materialia , vol.50 , Issue.8 , pp. 1909-1926
    • Jacot, A.1    Rappaz, M.2
  • 43
    • 0000991512 scopus 로고
    • Needle-crystal solution in three-dimensional dendritic growth
    • E. Brener Needle-crystal solution in three-dimensional dendritic growth Phys. Rev. Lett. 71 1993 3653 3656
    • (1993) Phys. Rev. Lett. , vol.71 , pp. 3653-3656
    • Brener, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.