메뉴 건너뛰기




Volumn 11, Issue 4, 2011, Pages 615-629

Higher order and recurrent neural architectures for trading the EUR/USD exchange rate

Author keywords

Options volatility; Quantitative trading strategies; Risk management; Volatility modelling

Indexed keywords


EID: 79953179007     PISSN: 14697688     EISSN: 14697696     Source Type: Journal    
DOI: 10.1080/14697680903386348     Document Type: Article
Times cited : (49)

References (36)
  • 4
    • 0036685113 scopus 로고    scopus 로고
    • Forecasting and trading currency volatility: An application of recurrent neural regression and model combination
    • Dunis, C. and Huang, X., Forecasting and trading currency volatility: an application of recurrent neural regression and model combination. J. Forecast., 2002, 21, 317-354.
    • (2002) J. Forecast , vol.21 , pp. 317-354
    • Dunis, C.1    Huang, X.2
  • 5
    • 33747587850 scopus 로고    scopus 로고
    • Trading futures spreads: An application of correlation and threshold filters
    • Dunis, C., Laws, J. and Evans, B., Trading futures spreads: an application of correlation and threshold filters. Appl. Financial Econ., 2006a, 16, 1-12.
    • (2006) Appl. Financial Econ , vol.16 , pp. 1-12
    • Dunis, C.1    Laws, J.2    Evans, B.3
  • 6
    • 70350203493 scopus 로고    scopus 로고
    • Modelling and trading the gasoline crack spread: A non-linear story
    • Dunis, C., Laws, J. and Evans, B., Modelling and trading the gasoline crack spread: a non-linear story. Deriv. Use, Trad. Regul, 2006b, 12, 126-145.
    • (2006) Deriv. Use, Trad. Regul , vol.12 , pp. 126-145
    • Dunis, C.1    Laws, J.2    Evans, B.3
  • 7
    • 70350168612 scopus 로고    scopus 로고
    • The robustness of neural networks for modelling and trading the EUR/USD exchange rate at the ECB fixing
    • forthcoming
    • Dunis, C., Laws, J. and Sermpinis, G., The robustness of neural networks for modelling and trading the EUR/USD exchange rate at the ECB fixing. J. Deriv. Hedge Funds, 2009, forthcoming.
    • (2009) J. Deriv. Hedge Funds
    • Dunis, C.1    Laws, J.2    Sermpinis, G.3
  • 8
    • 0442319687 scopus 로고    scopus 로고
    • Modelling and trading the EUR/USD exchange rate: Do neural network models perform better?
    • Dunis, C. and Williams, M., Modelling and trading the EUR/USD exchange rate: do neural network models perform better? Deriv. Use, Trad. Regul., 2002, 8(3), 211-239.
    • (2002) Deriv. Use, Trad. Regul , vol.8 , Issue.3 , pp. 211-239
    • Dunis, C.1    Williams, M.2
  • 9
    • 11144320514 scopus 로고    scopus 로고
    • Applications of advanced regression analysis for trading and investment
    • edited by C. Dunis, J. Laws, and P. Naim, Wiley: Chichester
    • Dunis, C. and Williams, M., Applications of advanced regression analysis for trading and investment. In Applied Quantitative Methods for Trading and Investment, edited by C. Dunis, J. Laws, and P. Naim, 2003 (Wiley: Chichester).
    • (2003) In Applied Quantitative Methods For Trading and Investment
    • Dunis, C.1    Williams, M.2
  • 10
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman, J.L., Finding structure in time. Cogn. Sci., 1990, 14, 179-211.
    • (1990) Cogn. Sci , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 13
    • 0001666851 scopus 로고
    • Efficient higher-order neural networks for classification and function approximation
    • Ghosh, J. and Shin, Y., Efficient higher-order neural networks for classification and function approximation. Int. J. Neural Syst., 1992, 3, 323-350.
    • (1992) Int. J. Neural Syst , vol.3 , pp. 323-350
    • Ghosh, J.1    Shin, Y.2
  • 14
    • 0023513717 scopus 로고
    • Learning, invariance and generalization in higher order neural networks
    • Giles, L. and Maxwell, T., Learning, invariance and generalization in higher order neural networks. Appl. Optics, 1987, 26, 4972-4978.
    • (1987) Appl. Optics , vol.26 , pp. 4972-4978
    • Giles, L.1    Maxwell, T.2
  • 15
    • 79953217838 scopus 로고    scopus 로고
    • Development of machine learning software for high frequency trading in financial markets
    • IGI: Hershey)
    • Hryshko, A. and Downs, T., Development of machine learning software for high frequency trading in financial markets. Business Applications and Computational Intelligence, 2006 (IGI: Hershey).
    • (2006) Business Applications and Computational Intelligence
    • Hryshko, A.1    Downs, T.2
  • 19
    • 0030130753 scopus 로고    scopus 로고
    • Designing a neural network for forecasting financial and economic time series
    • Kaastra, I. and Boyd, M., Designing a neural network for forecasting financial and economic time series. Neurocomputing, 1996, 10, 215-236.
    • (1996) Neurocomputing , vol.10 , pp. 215-236
    • Kaastra, I.1    Boyd, M.2
  • 21
    • 0029115242 scopus 로고
    • On the training and performance of high-order neural networks
    • Karayiannis, N. and Venetsanopoulos, A., On the training and performance of high-order neural networks. Math. Biosci., 1994, 129, 143-168.
    • (1994) Math. Biosci , vol.129 , pp. 143-168
    • Karayiannis, N.1    Venetsanopoulos, A.2
  • 22
    • 30744460774 scopus 로고    scopus 로고
    • Higher-order neural networks with Bayesian confidence measure for prediction of EUR/USD exchange rate
    • Available online at
    • Knowles, A., Hussein, A., Deredy, W., Lisboa, P. and Dunis, C.L., Higher-order neural networks with Bayesian confidence measure for prediction of EUR/USD exchange rate. CIBEF Working Papers, 2005. Available online at: www.cibef.com.
    • (2005) CIBEF Working Papers
    • Knowles, A.1    Hussein, A.2    Deredy, W.3    Lisboa, P.4    Dunis, C.L.5
  • 24
    • 28844478567 scopus 로고    scopus 로고
    • Level estimation, classification and probability distribution architectures for trading the EUR/USD exchange rate
    • Lindemann, A., Dunis, C. and Lisboa, P., Level estimation, classification and probability distribution architectures for trading the EUR/USD exchange rate. Neural Netw. Comput.Applic., 2004, 14, 256-271.
    • (2004) Neural Netw. Comput.Applic , vol.14 , pp. 256-271
    • Lindemann, A.1    Dunis, C.2    Lisboa, P.3
  • 25
    • 33644881976 scopus 로고    scopus 로고
    • Probability distributions and leveraged trading strategies: An application of Gaussian mixture models to the Morgan Stanley technology index tracking fund
    • Lindemann, A., Dunis, C. and Lisboa, P., Probability distributions and leveraged trading strategies: an application of Gaussian mixture models to the Morgan Stanley technology index tracking fund. Quant. Finan., 2005, 5, 459-474.
    • (2005) Quant. Finan , vol.5 , pp. 459-474
    • Lindemann, A.1    Dunis, C.2    Lisboa, P.3
  • 27
    • 79953167653 scopus 로고    scopus 로고
    • Using new information technologies for modeling data on global markets: An efficient interaction between 'artificial' human brain and economics
    • Ozun, A., Using new information technologies for modeling data on global markets: an efficient interaction between 'artificial' human brain and economics, In Proceedings of the Conference on Human and Economic Resources, 2006, pp. 349-359.
    • (2006) In Proceedings of the Conference On Human and Economic Resources , pp. 349-359
    • Ozun, A.1
  • 28
    • 0023834038 scopus 로고
    • Higher order associative memories and their optical implementations
    • Psaltis, D., Park, C. and Hong, J., Higher order associative memories and their optical implementations. Neural Netw., 1988, 1, 149-163.
    • (1988) Neural Netw , vol.1 , pp. 149-163
    • Psaltis, D.1    Park, C.2    Hong, J.3
  • 29
    • 0027849294 scopus 로고
    • Constructive higher-order network algorithm that is polynomial time
    • Redding, N., Kowalczyk, A. and Downs, T., Constructive higher-order network algorithm that is polynomial time. Neural Netw., 1993, 6, 997-1010.
    • (1993) Neural Netw , vol.6 , pp. 997-1010
    • Redding, N.1    Kowalczyk, A.2    Downs, T.3
  • 30
    • 0034621109 scopus 로고    scopus 로고
    • A hitchhiker's guide to the techniques of adaptive nonlinear models
    • Shapiro, A.F., A hitchhiker's guide to the techniques of adaptive nonlinear models. Insurance, Math. Econ., 2000, 26, 119-132.
    • (2000) Insurance, Math. Econ , vol.26 , pp. 119-132
    • Shapiro, A.F.1
  • 31
    • 0026375443 scopus 로고
    • The Pi-Sigma network: An efficient higher-order neural network for pattern classification and function approximation
    • Seattle
    • Shin, Y. and Ghosh, J., The Pi-Sigma network: an efficient higher-order neural network for pattern classification and function approximation, in Proceedings IJCNN, Seattle, 1991, pp. 13-18.
    • (1991) Proceedings IJCNN , pp. 13-18
    • Shin, Y.1    Ghosh, J.2
  • 32
    • 0030291725 scopus 로고    scopus 로고
    • Forecasting foreign exchange rates using recurrent neural networks
    • Tenti, P., Forecasting foreign exchange rates using recurrent neural networks. Appl. Artif. Intell., 1996, 10, 567-581.
    • (1996) Appl. Artif. Intell , vol.10 , pp. 567-581
    • Tenti, P.1
  • 33
    • 0035392695 scopus 로고    scopus 로고
    • Financial volatility trading using recurrent networks
    • Tino, P., Schittenkopf, C. and Doffner, G., Financial volatility trading using recurrent networks. IEEE Trans. Neural Netw., 2001, 12, 865-874.
    • (2001) IEEE Trans. Neural Netw , vol.12 , pp. 865-874
    • Tino, P.1    Schittenkopf, C.2    Doffner, G.3
  • 35
    • 0032029155 scopus 로고    scopus 로고
    • Learning and approximation capabilities of adaptive spline activation neural networks
    • Vecci, L., Piazza, F. and Uncini, A., Learning and approximation capabilities of adaptive spline activation neural networks. Neural Netw., 1998, 11, 259-270.
    • (1998) Neural Netw , vol.11 , pp. 259-270
    • Vecci, L.1    Piazza, F.2    Uncini, A.3
  • 36
    • 0036129962 scopus 로고    scopus 로고
    • Neuron-adaptive higher order neural-network models for automated financial data modelling
    • Zhang, M., Xu, S.X. and Fulcher, J., Neuron-adaptive higher order neural-network models for automated financial data modelling. IEEE Trans. Neural Netw., 2002, 13, 188-204.
    • (2002) IEEE Trans. Neural Netw , vol.13 , pp. 188-204
    • Zhang, M.1    Xu, S.X.2    Fulcher, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.