메뉴 건너뛰기




Volumn 39, Issue 3, 2011, Pages 1097-1121

The rank of diluted random graphs

Author keywords

Adjacency matrix; Karp and Sipser algorithm; Local weak convergence; Random graphs; Random matrices

Indexed keywords


EID: 79953133890     PISSN: 00911798     EISSN: None     Source Type: Journal    
DOI: 10.1214/10-AOP567     Document Type: Article
Times cited : (66)

References (19)
  • 1
    • 33747884265 scopus 로고    scopus 로고
    • Stability of the absolutely continuous spectrum of random Schrödinger operators on tree graphs
    • AIZENMAN, M., SIMS, R. and WARZEL, S. (2006). Stability of the absolutely continuous spectrum of random Schrödinger operators on tree graphs. Probab. Theory Related Fields 136 363-394.
    • (2006) Probab. Theory Related Fields , vol.136 , pp. 363-394
    • Aizenman, M.1    Sims, R.2    Warzel, S.3
  • 2
    • 40749096896 scopus 로고    scopus 로고
    • Processes on unimodular random networks
    • ALDOUS, D. and LYONS, R. (2007). Processes on unimodular random networks. Electron. J. Probab. 12 1454-1508.
    • (2007) Electron. J. Probab. , vol.12 , pp. 1454-1508
    • Aldous, D.1    Lyons, R.2
  • 3
    • 1842487285 scopus 로고    scopus 로고
    • The objective method: Probabilistic combinatorial optimization and local weak convergence
    • Springer, Berlin
    • ALDOUS, D. and STEELE, J. M. (2004). The objective method: Probabilistic combinatorial optimization and local weak convergence. In Probability on Discrete Structures. Encyclopaedia Math. Sci. 110 1-72. Springer, Berlin.
    • (2004) Probability on Discrete Structures. Encyclopaedia Math. Sci. , vol.110 , pp. 1-72
    • Aldous, D.1    Steele, J.M.2
  • 5
    • 0242317963 scopus 로고    scopus 로고
    • On the kernel of tree incidence matrices
    • Art. 00.1.4, 1 HTML document (electronic)
    • BAUER, M. and GOLINELLI, O. (2000). On the kernel of tree incidence matrices. J. Integer Seq. 3 Art. 00.1.4, 1 HTML document (electronic).
    • (2000) J. Integer Seq. , vol.3
    • Bauer, M.1    Golinelli, O.2
  • 6
    • 0035911705 scopus 로고    scopus 로고
    • Exactly solvable model with two conductor-insulator transitions driven by impurities
    • BAUER, M. and GOLINELLI, O. (2001). Exactly solvable model with two conductor-insulator transitions driven by impurities. Phys. Rev. Lett. 86 2621-2624.
    • (2001) Phys. Rev. Lett. , vol.86 , pp. 2621-2624
    • Bauer, M.1    Golinelli, O.2
  • 7
    • 0242278812 scopus 로고    scopus 로고
    • Recurrence of distributional limits of finite planar graphs
    • (electronic)
    • BENJAMINI, I. and SCHRAMM, O. (2001). Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6 13 pp. (electronic).
    • (2001) Electron. J. Probab. , vol.6 , pp. 13
    • Benjamini, I.1    Schramm, O.2
  • 9
    • 79953151911 scopus 로고    scopus 로고
    • Karp-Sipser on random graphs with a fixed degree sequence
    • BOHMAN, T. and FRIEZE, A. (2010). Karp-Sipser on random graphs with a fixed degree sequence.
    • (2010)
    • Bohman, T.1    Frieze, A.2
  • 13
    • 33751509641 scopus 로고    scopus 로고
    • Random symmetric matrices are almost surely nonsingular
    • COSTELLO, K. P., TAO, T. and VU, V. (2006). Random symmetric matrices are almost surely nonsingular. Duke Math. J. 135 395-413.
    • (2006) Duke Math. J. , vol.135 , pp. 395-413
    • Costello, K.P.1    Tao, T.2    Vu, V.3
  • 16
    • 2142640772 scopus 로고    scopus 로고
    • Eigenvalue distribution of large weighted random graphs
    • KHORUNZHY, O., SHCHERBINA, M. and VENGEROVSKY, V. (2004). Eigenvalue distribution of large weighted random graphs. J. Math. Phys. 45 1648-1672.
    • (2004) J. Math. Phys. , vol.45 , pp. 1648-1672
    • Khorunzhy, O.1    Shcherbina, M.2    Vengerovsky, V.3
  • 17
    • 0000120387 scopus 로고    scopus 로고
    • Extended states in the Anderson model on the Bethe lattice
    • KLEIN, A. (1998). Extended states in the Anderson model on the Bethe lattice. Adv. Math. 133 163-184.
    • (1998) Adv. Math. , vol.133 , pp. 163-184
    • Klein, A.1
  • 19
    • 42749104122 scopus 로고    scopus 로고
    • The number of matchings in random graphs
    • (electronic)
    • ZDEBOROVÁ, L. and MÉZARD, M. (2006). The number of matchings in random graphs. J. Stat. Mech. Theory Exp. 5 P05003, 24 pp. (electronic).
    • (2006) J. Stat. Mech. Theory Exp. , vol.5 P05003 , pp. 24
    • Zdeborová, L.1    Mézard, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.