-
1
-
-
39749117350
-
Generalized solitonary and periodic solutions for nonlinear partial differential equations by the Exp-function method
-
DOI 10.1007/s11071-007-9250-1
-
Abdou M,. Generalized solitonary and periodic solutions for nonlinear partial differential equations by the Exp-function method. Nonlinear Dynamics 2008; 52 (1-2): 1-9. (Pubitemid 351304389)
-
(2008)
Nonlinear Dynamics
, vol.52
, Issue.1-2
, pp. 1-9
-
-
Abdou, M.A.1
-
2
-
-
67649170625
-
1-soliton solution of the Kadomtsev-Petviashvili equation with power law nonlinearity
-
Biswas A, Ranasinghe A,. 1-soliton solution of the Kadomtsev-Petviashvili equation with power law nonlinearity. Applied Mathematics and Computation 2009; 214 (2): 645-647.
-
(2009)
Applied Mathematics and Computation
, vol.214
, Issue.2
, pp. 645-647
-
-
Biswas, A.1
Ranasinghe, A.2
-
3
-
-
46449139466
-
Application of exp-function method for (3+1)-dimensional nonlinear evolution equations
-
Boz A, Bekir A,. Application of exp-function method for (3+1)-dimensional nonlinear evolution equations. Computers and Mathematics with Applications 2009; 56 (5): 1451-1456.
-
(2009)
Computers and Mathematics with Applications
, vol.56
, Issue.5
, pp. 1451-1456
-
-
Boz, A.1
Bekir, A.2
-
4
-
-
67649517444
-
Optical solitons with parabolic and dual-power law nonlinearity via Lie symmetry analysis
-
Khalique CM, Biswas A,. Optical solitons with parabolic and dual-power law nonlinearity via Lie symmetry analysis. Journal of Electromagnetic Waves and Applications 2009; 23 (7): 963-973.
-
(2009)
Journal of Electromagnetic Waves and Applications
, vol.23
, Issue.7
, pp. 963-973
-
-
Khalique, C.M.1
Biswas, A.2
-
5
-
-
37549033511
-
The (G′/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics
-
Wang M, Li X, Zhang J,. The (G′/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Physics Letters A 2008; 372: 417-423.
-
(2008)
Physics Letters A
, vol.372
, pp. 417-423
-
-
Wang, M.1
Li, X.2
Zhang, J.3
-
6
-
-
0346119928
-
Compact structures for variants of the generalized KdV and the generalized KP equations
-
Wazwaz AM,. Compact structures for variants of the generalized KdV and the generalized KP equations. Applied Mathematics and Computation 2004; 149 (1): 103-117.
-
(2004)
Applied Mathematics and Computation
, vol.149
, Issue.1
, pp. 103-117
-
-
Wazwaz, A.M.1
-
7
-
-
34249786250
-
Multiple-soliton solutions for the KP equation by Hirota's bilinear method and by the tanh-coth method
-
DOI 10.1016/j.amc.2007.01.056, PII S0096300307000975
-
Wazwaz A-M,. Multiple-soliton solutions for the KP equation by Hirots's bilinear method and by the tanh-coth method. Applied Mathematics and Computation 2007; 190 (1): 633-640. (Pubitemid 46856693)
-
(2007)
Applied Mathematics and Computation
, vol.190
, Issue.1
, pp. 633-640
-
-
Wazwaz, A.-M.1
-
8
-
-
52049098686
-
Regular soliton solutions and singular soliton solutions for the modified Kadomtsev-Petviashvili equations
-
Wazwaz A-M,. Regular soliton solutions and singular soliton solutions for the modified Kadomtsev-Petviashvili equations. Applied Mathematics and Computation 2008; 204 (1): 227-232.
-
(2008)
Applied Mathematics and Computation
, vol.204
, Issue.1
, pp. 227-232
-
-
Wazwaz, A.-M.1
-
9
-
-
77957252435
-
New explicit travelling wave solutions for three nonlinear evolution equations
-
DOI: 10.1016/j.amc.2009.07.010.
-
Wu J,. New explicit travelling wave solutions for three nonlinear evolution equations. Applied Mathematics and Computation 2010; DOI: 10.1016/j.amc.2009.07.010.
-
(2010)
Applied Mathematics and Computation
-
-
Wu, J.1
-
10
-
-
9644255681
-
Symbolic computation in nonlinear evolution equation: Application to (3+1)-dimensional Kadomtsev-Petviashvili equation
-
Xie F, Zhang Y, Lü Z,. Symbolic computation in nonlinear evolution equation: application to (3+1)-dimensional Kadomtsev-Petviashvili equation. Chaos, Solitons and Fractals 2005; 24 (1): 257-263.
-
(2005)
Chaos, Solitons and Fractals
, vol.24
, Issue.1
, pp. 257-263
-
-
Xie, F.1
Zhang, Y.2
Lü, Z.3
|