메뉴 건너뛰기




Volumn 13, Issue 2, 2011, Pages 330-341

Learning visual contexts for image annotation from flickr groups

Author keywords

Content based image retrieval; context; image annotation

Indexed keywords

AUTOMATIC IMAGE ANNOTATION; CONTENT BASED IMAGE RETRIEVAL; CONTEXT; IMAGE ANNOTATION; LEARNING CONTEXT; QUANTITATIVE EXPERIMENTS; VISUAL CONTEXT;

EID: 79952947989     PISSN: 15209210     EISSN: None     Source Type: Journal    
DOI: 10.1109/TMM.2010.2101051     Document Type: Article
Times cited : (54)

References (48)
  • 3
    • 0141607824 scopus 로고    scopus 로고
    • Latent Dirichlet allocation
    • D. Blei, A. Ng, and M. Jordan, "Latent Dirichlet allocation," J. Mach. Learn. Res., vol. 3, pp. 993-1022, 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 993-1022
    • Blei, D.1    Ng, A.2    Jordan, M.3
  • 4
    • 51949098790 scopus 로고    scopus 로고
    • Annotating collections of photos using hierarchical event and scene models
    • L. Cao, J. Luo, H. Kautz, and T. Huang, "Annotating collections of photos using hierarchical event and scene models," in Proc. CVPR, 2008, pp. 1-8.
    • (2008) Proc. CVPR , pp. 1-8
    • Cao, L.1    Luo, J.2    Kautz, H.3    Huang, T.4
  • 8
    • 74049123062 scopus 로고    scopus 로고
    • Style modeling for tagging personal photo collections
    • M. Duan, A. Ulges, T. Breuel, and X.-Q.Wu, "Style modeling for tagging personal photo collections," in Proc. CIVR, 2009.
    • (2009) Proc. CIVR
    • Duan, M.1    Ulges, A.2    Breuel, T.3    Wu, X.-Q.4
  • 9
    • 84937572644 scopus 로고    scopus 로고
    • Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary
    • P. Duygulu, K. Barnard, J. de Freitas, and D. Forsyth, "Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary," in Proc. ECCV, 2002, pp. 97-112.
    • (2002) Proc. ECCV , pp. 97-112
    • Duygulu, P.1    Barnard, K.2    De Freitas, J.3    Forsyth, D.4
  • 10
    • 1942485278 scopus 로고    scopus 로고
    • Using the triangle inequality to accelerate KMeans
    • C. Elkan, "Using the triangle inequality to accelerate KMeans," in Proc. ICML, 2003, pp. 147-153.
    • (2003) Proc. ICML , pp. 147-153
    • Elkan, C.1
  • 11
    • 33745155436 scopus 로고    scopus 로고
    • A Bayesian hierarchical model for learning natural scene categories
    • L. Fei-Fei and P. Perona, "A Bayesian hierarchical model for learning natural scene categories," in Proc. CVPR, 2005, pp. 524-531.
    • (2005) Proc. CVPR , pp. 524-531
    • Fei-Fei, L.1    Perona, P.2
  • 12
    • 57549086474 scopus 로고    scopus 로고
    • A discrete direct retrieval model for image and video retrieval
    • S. Feng and R. Manmatha, "A discrete direct retrieval model for image and video retrieval," in Proc. CIVR, 2008, pp. 427-436.
    • (2008) Proc. CIVR , pp. 427-436
    • Feng, S.1    Manmatha, R.2
  • 13
    • 5044225521 scopus 로고    scopus 로고
    • Multiple Bernoulli relevance models for image and video annotation
    • S. Feng, R. Manmatha, and V. Lavrenko, "Multiple Bernoulli relevance models for image and video annotation," in Proc. CVPR, 2004.
    • (2004) Proc. CVPR
    • Feng, S.1    Manmatha, R.2    Lavrenko, V.3
  • 16
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic Latent Semantic Analysis
    • DOI 10.1023/A:1007617005950
    • T. Hofmann, "Unsupervised learning by probabilistic latent semantic analysis," Mach. Learn., vol. 42, pp. 177-196, 2001. (Pubitemid 32872403)
    • (2001) Machine Learning , vol.42 , Issue.1-2 , pp. 177-196
    • Hofmann, T.1
  • 18
    • 35048876369 scopus 로고    scopus 로고
    • Using maximum entropy for automatic image tagging
    • Jul.
    • J. Jeon and R. Manmatha, "Using maximum entropy for automatic image tagging," in Proc. CIVR, Jul. 2004, pp. 24-32.
    • (2004) Proc. CIVR , pp. 24-32
    • Jeon, J.1    Manmatha, R.2
  • 19
    • 35048860021 scopus 로고    scopus 로고
    • A constrained semi-supervised learning approach to data association
    • H. Kück, P. Carbonetto, and N. de Freitas, "A constrained semi-supervised learning approach to data association," in Proc. ECCV, 2004, pp. 1-12.
    • (2004) Proc. ECCV , pp. 1-12
    • Kück, H.1    Carbonetto, P.2    De Freitas, N.3
  • 23
    • 34948829141 scopus 로고    scopus 로고
    • OPTIMOL: Automatic object picture collection via incremental model learning
    • L.-J. Li, G. Wang, and L. Fei-Fei, "OPTIMOL: Automatic object picture collection via incremental model learning," in Proc. CVPR, 2007.
    • (2007) Proc. CVPR
    • Li, L.-J.1    Wang, G.2    Fei-Fei, L.3
  • 24
    • 79952928762 scopus 로고    scopus 로고
    • Image annotation by large-scale content-based image retrieval
    • X. Li, L. Chen, L. Zhang, F. Lin, and W.-Y. Ma, "Image annotation by large-scale content-based image retrieval," in Proc. ACM MM, 2006.
    • (2006) Proc. ACM MM
    • Li, X.1    Chen, L.2    Zhang, L.3    Lin, F.4    Ma, W.-Y.5
  • 25
    • 70349220997 scopus 로고    scopus 로고
    • Annotating images by harnessing worldwide user-tagged photos
    • X. Li, C. Snoek, and M. Worring, "Annotating images by harnessing worldwide user-tagged photos," in Proc. ICASSP, 2009.
    • (2009) Proc. ICASSP
    • Li, X.1    Snoek, C.2    Worring, M.3
  • 26
    • 70350333307 scopus 로고    scopus 로고
    • Learning social tag relevance by neighbor voting
    • Nov.
    • X. Li, C. Snoek, and M. Worring, "Learning social tag relevance by neighbor voting," IEEE Trans. Multimedia, vol. 11, no. 7, pp. 1310-1322, Nov. 2009.
    • (2009) IEEE Trans. Multimedia , vol.11 , Issue.7 , pp. 1310-1322
    • Li, X.1    Snoek, C.2    Worring, M.3
  • 27
    • 56749168888 scopus 로고    scopus 로고
    • A new baseline for image annotation
    • A. Makadia, V. Pavlovic, and S. Kumar, "A new baseline for image annotation," in Proc. ECCV, 2008, pp. 316-329.
    • (2008) Proc. ECCV , pp. 316-329
    • Makadia, A.1    Pavlovic, V.2    Kumar, S.3
  • 29
    • 35048883094 scopus 로고    scopus 로고
    • An inference network approach to image retrieval
    • D. Metzler and R. Manmatha, "An inference network approach to image retrieval," in Proc. CIVR, 2004, pp. 42-50.
    • (2004) Proc. CIVR , pp. 42-50
    • Metzler, D.1    Manmatha, R.2
  • 32
    • 84937542773 scopus 로고    scopus 로고
    • The truth about Corel-evaluation in image retrieval
    • H. Müller, S. Marchand-Maillet, and T. Pun, "The truth about Corel-evaluation in image retrieval," in Proc. CIVR, 2002, pp. 38-49.
    • (2002) Proc. CIVR , pp. 38-49
    • Müller, H.1    Marchand-Maillet, S.2    Pun, T.3
  • 35
    • 57549094030 scopus 로고    scopus 로고
    • Analyzing Flickr groups
    • Jul.
    • R. Negoescu and D. Gatica-Perez, "Analyzing Flickr groups," in Proc. CIVR, Jul. 2008, pp. 417-426.
    • (2008) Proc. CIVR , pp. 417-426
    • Negoescu, R.1    Gatica-Perez, D.2
  • 38
    • 70449556824 scopus 로고    scopus 로고
    • Can social tagged images aid concept-based video search?
    • A. Setz and C. Snoek, "Can social tagged images aid concept-based video search?," in Proc. ICME, 2009, pp. 1460-1463.
    • (2009) Proc. ICME , pp. 1460-1463
    • Setz, A.1    Snoek, C.2
  • 39
    • 34948882335 scopus 로고    scopus 로고
    • Video Google: Efficient visual search of videos
    • New York: Springer-Verlag
    • J. Sivic and A. Zisserman, "Video Google: Efficient visual search of videos," in Toward Category-Level Object Recognition. New York: Springer-Verlag, 2006, pp. 127-144.
    • (2006) Toward Category-Level Object Recognition , pp. 127-144
    • Sivic, J.1    Zisserman, A.2
  • 40
    • 33847770046 scopus 로고    scopus 로고
    • A study of quality issues for image auto-annotation with the corel dataset
    • DOI 10.1109/TCSVT.2006.888941
    • J. Tang and P. Lewis, "A study of quality issues for image auto-annotation with the Corel dataset," IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 3, pp. 384-389, Mar. 2007. (Pubitemid 46393337)
    • (2007) IEEE Transactions on Circuits and Systems for Video Technology , vol.17 , Issue.3 , pp. 384-389
    • Tang, J.1    Lewis, P.H.2
  • 41
  • 42
  • 43
    • 79952969020 scopus 로고    scopus 로고
    • Empirical investigations on benchmark tasks for automatic image annotation
    • V. Viitaniemi and J. Laaksonen, "Empirical investigations on benchmark tasks for automatic image annotation," in Proc. VISUAL, 2007.
    • (2007) Proc. VISUAL
    • Viitaniemi, V.1    Laaksonen, J.2
  • 44
    • 77957970581 scopus 로고    scopus 로고
    • Image annotation refinement using random walk with restarts
    • C. Wang, F. Jing, L. Zhang, and H. Zhang, "Image annotation refinement using random walk with restarts," in Proc. ACM MM, 2006.
    • (2006) Proc. ACM MM
    • Wang, C.1    Jing, F.2    Zhang, L.3    Zhang, H.4
  • 46
    • 33750080278 scopus 로고    scopus 로고
    • Region based image annotation through multiple-instance learning
    • C. Yang, M. Dong, and F. Fotouhi, "Region based image annotation through multiple-instance learning," in Proc. ACM MM, 2005.
    • (2005) Proc. ACM MM
    • Yang, C.1    Dong, M.2    Fotouhi, F.3
  • 48
    • 26444467666 scopus 로고    scopus 로고
    • Automated image annotation using global features and robust nonparametric density estimation
    • Image and Video Retrieval: 4th International Conference, CIVR 2005. Proceedings
    • A.Yavlinsky, E. Schofield, and S. Rüger, "Automated image annotation using global features and robust nonparametric density estimation," in Proc. CIVR, Jul. 2005, pp. 507-517. (Pubitemid 41425589)
    • (2005) Lecture Notes in Computer Science , vol.3568 , pp. 507-517
    • Yavlinsky, A.1    Schofield, E.2    Ruger, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.