메뉴 건너뛰기




Volumn 52, Issue 7, 2011, Pages 2555-2564

A study of the importance of occupancy to building cooling load in prediction by intelligent approach

Author keywords

Artificial neural network; Building occupancy; Cooling load

Indexed keywords

COOLING; ENERGY CONSERVATION; FORECASTING; INVERSE PROBLEMS; NEURAL NETWORKS; OFFICE BUILDINGS;

EID: 79952783600     PISSN: 01968904     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enconman.2011.02.002     Document Type: Article
Times cited : (168)

References (41)
  • 1
    • 33646381288 scopus 로고    scopus 로고
    • A model for simulation of daylighting and occupancy sensors as an energy control strategy for office buildings
    • Kyoto, Japan
    • Degelman LO. A model for simulation of daylighting and occupancy sensors as an energy control strategy for office buildings. In: Proceedings of building simulation, vol. 99, Kyoto, Japan; 1999.
    • (1999) Proceedings of Building Simulation , vol.99
    • Degelman, L.O.1
  • 3
    • 36448993033 scopus 로고    scopus 로고
    • A generalized stochastic model for simulation of occupant presence
    • Page J, Robinson D, Morel M, Scartezzini JL. A generalized stochastic model for simulation of occupant presence. Energy Build 2008;40:82-98.
    • (2008) Energy Build , vol.40 , pp. 82-98
    • Page, J.1    Robinson, D.2    Morel, M.3    Scartezzini, J.L.4
  • 6
    • 69249216516 scopus 로고    scopus 로고
    • The effect of occupancy and building characteristics on energy use for space and water heating in Dutch residential stock.
    • Santin OG, Itard L, Visscher H. The effect of occupancy and building characteristics on energy use for space and water heating in Dutch residential stock. Energy Build 2009;41:1223-32.
    • (2009) Energy Build , vol.41 , pp. 1223-1232
    • Santin, O.G.1    Itard, L.2    Visscher, H.3
  • 8
    • 0031622942 scopus 로고    scopus 로고
    • Understanding the adaptive approach to thermal comfort
    • Humphreys MA, Nicol JF. Understanding the adaptive approach to thermal comfort. ASHRAE Trans 1998;104(1):991-1004.
    • (1998) ASHRAE Trans , vol.104 , Issue.1 , pp. 991-1004
    • Humphreys, M.A.1    Nicol, J.F.2
  • 9
    • 84864558738 scopus 로고    scopus 로고
    • A preliminary model of user behaviour regarding the manual control of windows in office buildings
    • Herkel S, Knapp U, Pfafferott J. A preliminary model of user behaviour regarding the manual control of windows in office buildings. In: Proceedings building simulations; 2005.
    • (2005) Proceedings Building Simulations
    • Herkel, S.1    Knapp, U.2    Pfafferott, J.3
  • 11
    • 0026960841 scopus 로고
    • Energy signature models for commercial buildings: test with measured data and interpretation
    • DOI 10.1016/0378-7788(92)90008-5
    • Rabl A, Rialhe A. Energy signature models for commercial buildings: test with measured data and interpretation. Energy Build 1992;19(2):143-54. (Pubitemid 23619889)
    • (1992) Energy and Buildings , vol.19 , Issue.2 , pp. 143-154
    • Rabl, A.1    Rialhe, A.2
  • 12
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • PII S0169207097000447
    • Zhang G, Patuwo BE, Hu MY. Forecasting with artificial neural networks: the state of the art. Int J Forecast 1998;14:35-62. (Pubitemid 128340470)
    • (1998) International Journal of Forecasting , vol.14 , Issue.1 , pp. 35-62
    • Zhang, G.1    Eddy Patuwo, B.2    Y. Hu, M.3
  • 13
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • DOI 10.1016/0893-6080(89)90020-8
    • Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Networks 1989;2:359-66. (Pubitemid 20609008)
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik Kurt1    Stinchcombe Maxwell2    White Halbert3
  • 14
    • 0026207670 scopus 로고
    • Short term laod forecasting using an adaptive neural network
    • Butterworth-Heinemann Ltd.
    • Dillon TS, Sestito S, Leung S. Short term laod forecasting using an adaptive neural network. Electrical power & energy systems. Butterworth-Heinemann Ltd.; 1991.
    • (1991) Electrical power & energy systems
    • Dillon, T.S.1    Sestito, S.2    Leung, S.3
  • 15
    • 0030204989 scopus 로고    scopus 로고
    • The application of artificial neural networks to substation load forecasting
    • Chen CS, Tseng YM, Hwang JC. The application of artificial neural networks to substation load forecasting. Electr Power Syst Res 1996;38.
    • (1996) Electr Power Syst Res , vol.38
    • Chen, C.S.1    Tseng, Y.M.2    Hwang, J.C.3
  • 16
    • 24944577137 scopus 로고    scopus 로고
    • Artificial neural networks applications in building energy predictions and a case study for tropical climates
    • DOI 10.1002/er.1105
    • Yalcintas M, Akkurt S. Artificial neural networks applications in building energy predictions and a case study for tropical climates. Int J Energy Res 2005;29(10):891-901. (Pubitemid 41300340)
    • (2005) International Journal of Energy Research , vol.29 , Issue.10 , pp. 891-901
    • Yalcintas, M.1    Akkurt, S.2
  • 18
    • 33746191769 scopus 로고    scopus 로고
    • An efficient approach for short term load forecasting using artificial neural networks
    • Kandil N, Wamkeue R, Saad M, Georges S. An efficient approach for short term load forecasting using artificial neural networks. Electr Power Energy Syst 2006;28.
    • (2006) Electr Power Energy Syst , vol.28
    • Kandil, N.1    Wamkeue, R.2    Saad, M.3    Georges, S.4
  • 21
    • 0029356764 scopus 로고
    • Implementation of hybrid short-term load forecasting system using artificial neural networks and fuzzy expert systems.
    • August
    • Kim KH, Park JK, Hwang KJ, Kim SH. Implementation of hybrid short-term load forecasting system using artificial neural networks and fuzzy expert systems. IEEE Trans Power Syst 1995;10(3):1-5 [August].
    • (1995) IEEE Trans Power Syst , vol.10 , Issue.3 , pp. 1-5
    • Kim, K.H.1    Park, J.K.2    Hwang, K.J.3    Kim, S.H.4
  • 22
    • 15744381443 scopus 로고    scopus 로고
    • Short term and medium term power distribution load forecasting by neural networks
    • Yalcinoz T, Eminoglu U. Short term and medium term power distribution load forecasting by neural networks. Energy Convers Manage 2005;46.
    • (2005) Energy Convers Manage , vol.46
    • Yalcinoz, T.1    Eminoglu, U.2
  • 23
    • 70349177541 scopus 로고    scopus 로고
    • Neural network based approach for shortterm load forecasting
    • December
    • Osman ZH, Awad ML, Mahmoud TK. Neural network based approach for shortterm load forecasting. IEEE Xplore; 2009 [December].
    • (2009) IEEE Xplore
    • Osman, Z.H.1    Awad, M.L.2    Mahmoud, T.K.3
  • 26
    • 50849120369 scopus 로고    scopus 로고
    • Short term load forecasting using artificial neural network
    • Banda E, Folly KA. Short term load forecasting using artificial neural network. IEEE Powertech; 2007.
    • (2007) IEEE Powertech
    • Banda, E.1    Folly, K.A.2
  • 27
    • 84892666034 scopus 로고    scopus 로고
    • A multi-layer artificial neural network architecture design for load forecasting in power systems
    • Mehta AJ, Mehta HA, Manjunath TC, Ardil C. A multi-layer artificial neural network architecture design for load forecasting in power systems. Int J Appl Math Comput Sci 2004;4(4).
    • (2004) Int J Appl Math Comput Sci , vol.4 , Issue.4
    • Mehta, A.J.1    Mehta, H.A.2    Manjunath, T.C.3    Ardil, C.4
  • 29
    • 13844306850 scopus 로고    scopus 로고
    • Prediction of hourly energy consumption in buildings based on a feedback artificial neural network
    • Gonzalez PA, Zamarreno JM. Prediction of hourly energy consumption in buildings based on a feedback artificial neural network. Energy Build 2005;37.
    • (2005) Energy Build , vol.37
    • Gonzalez, P.A.1    Zamarreno, J.M.2
  • 30
    • 79953740346 scopus 로고    scopus 로고
    • Next 24-hours load forecasting using artificial neural network (ANN) for the West Area of Saudi Arabia
    • AI-Shareef ASJ, Mohamed EA, AI-Judaibi E. Next 24-hours load forecasting using artificial neural network (ANN) for the West Area of Saudi Arabia. JKAU: Eng Sci 2008;19(2):25-40.
    • (2008) JKAU: Eng Sci , vol.19 , Issue.2 , pp. 25-40
    • AI-Shareef, A.S.J.1    Mohamed, E.A.2    AI-Judaibi, E.3
  • 31
    • 79953743402 scopus 로고    scopus 로고
    • Electricity load forecasting using artificial neural networks
    • Afolabi AO, Olatunji BO, Ajayi AO. Electricity load forecasting using artificial neural networks. J Eng Appl Sci 2008;3(2):149-54.
    • (2008) J Eng Appl Sci , vol.3 , Issue.2 , pp. 149-154
    • Afolabi, A.O.1    Olatunji, B.O.2    Ajayi, A.O.3
  • 32
    • 37449027398 scopus 로고    scopus 로고
    • An applied artificial intelligence approach towards assessing building performance simulation tools
    • Yezioro A, Dong B, Leite F. An applied artificial intelligence approach towards assessing building performance simulation tools. Energy Build 2008;40(4):612-20.
    • (2008) Energy Build , vol.40 , Issue.4 , pp. 612-620
    • Yezioro, A.1    Dong, B.2    Leite, F.3
  • 34
    • 77957925441 scopus 로고    scopus 로고
    • An incremental adaptive neural network model for online noisy data regression and its application to compartment fire studies
    • doi:10.1016/j.asoc.2010.01.002
    • Lee EWM. An incremental adaptive neural network model for online noisy data regression and its application to compartment fire studies. Appl Soft Comput J; 2010. doi:10.1016/j.asoc.2010.01.002.
    • Appl Soft Comput J , vol.2010
    • Lee, E.W.M.1
  • 35
    • 0024666706 scopus 로고
    • Entropy expressions and their estimators for multivariate distributions
    • DOI 10.1109/18.30996
    • Ahmed NA, Gokhale DV. Entropy expression and their estimators for multivariate distributions. IEEE Trans Inf Theory 1989;35(3):688-92. (Pubitemid 20606244)
    • (1989) IEEE Transactions on Information Theory , vol.35 , Issue.3 , pp. 688-692
    • Ahmed Nabil Ali1    Gokhale, D.V.2
  • 36
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • Parzen E. On estimation of a probability density function and mode. Ann Math Stat 1962;33(3):1065-76.
    • (1962) Ann Math Stat , vol.33 , Issue.3 , pp. 1065-1076
    • Parzen, E.1
  • 37
    • 52349093047 scopus 로고    scopus 로고
    • Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption
    • Neto AH, Augusto F, Fiorelli S. Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption. Energy Build 2008;40(12):2169-76.
    • (2008) Energy Build , vol.40 , Issue.12 , pp. 2169-2176
    • Neto, A.H.1    Augusto, F.2    Fiorelli, S.3
  • 39
    • 52149094335 scopus 로고    scopus 로고
    • Energy-savings predictions for building-equipment retrofits
    • Yalcintas M. Energy-savings predictions for building-equipment retrofits. Energy Build 2008;40(12):2111-20.
    • (2008) Energy Build , vol.40 , Issue.12 , pp. 2111-2120
    • Yalcintas, M.1
  • 40
    • 0041428062 scopus 로고    scopus 로고
    • An overview of artificial intelligence-based methods for building energy systems
    • Krati M. An overview of artificial intelligence-based methods for building energy systems. J Sol Energy Eng 2003;125(3):331-42.
    • (2003) J Sol Energy Eng , vol.125 , Issue.3 , pp. 331-342
    • Krati, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.