메뉴 건너뛰기




Volumn 2, Issue , 1998, Pages 1153-1156

Adaptive RBF net algorithms for nonlinear signal learning with applications to financial prediction and investment

Author keywords

[No Author keywords available]

Indexed keywords

BASIS FUNCTIONS; BAYESIAN YING-YANG LEARNING; FAST IMPLEMENTATION; FINANCIAL PREDICTION; FOREIGN EXCHANGE PREDICTIONS; NONLINEAR SIGNALS; NORMALIZED RADIAL BASIS FUNCTIONS; SIMULTANEOUS TRAINING;

EID: 79952744309     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.1998.675474     Document Type: Conference Paper
Times cited : (1)

References (14)
  • 1
    • 0008995203 scopus 로고
    • Generalization properties of radial basis function
    • eds. R.P.Lippmann et al, (Morgan Kaufmann Pub
    • S.M.Botros and C.G.Atkeson, Generalization properties of radial basis function, Advances in Neural Information Processing Systems 3, eds. R.P.Lippmann et al, (Morgan Kaufmann Pub., 1991), 707-713.
    • (1991) Advances in Neural Information Processing Systems , vol.3 , pp. 707-713
    • Botros, S.M.1    Atkeson, C.G.2
  • 2
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • S.Chen, C.F.N.Cowan and P.M.Grant, Orthogonal least squares learning algorithm for Radial basis function networks, IEEE Trans. Neural Networks 2(1991), 302-309.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 4
    • 0026627114 scopus 로고
    • Information theoretic derivation of network architecture and learning algorithms
    • R.D.Jones et al, Information theoretic derivation of network architecture and learning algorithms, Proc. of IJCNN9I-Seattle, Vol.II(1991), 473-478.
    • (1991) Proc. of IJCNN9I-Seattle , vol.2 , pp. 473-478
    • Jones, R.D.1
  • 5
    • 0011180615 scopus 로고
    • Sequential adaptation of radial basis function neural networks and its application to time-series prediction
    • eds., R.P.Lippmann, et al, (San Mateo: Morgan Kaufmann Pub
    • V. Kardirkamanathan, M. Niranjan and F.Fallside, Sequential adaptation of Radial basis function neural networks and its application to time-series prediction, Advances in Neural Information Processing System 3, eds., R.P.Lippmann, et al, (San Mateo: Morgan Kaufmann Pub, 1991), 721-727.
    • (1991) Advances in Neural Information Processing System , vol.3 , pp. 721-727
    • Kardirkamanathan, V.1    Niranjan, M.2    Fallside, F.3
  • 6
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • J.Moody &J.Darken, Fast learning in networks of locally-tuned processing units, Neural Computation 7(1989), 281294.
    • (1989) Neural Computation , vol.7 , pp. 281294
    • Moody, J.1    Darken, J.2
  • 7
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • T.Poggio and F.Girosi, Networks for approximation and learning, Proc. of IEEE 75(1990), 1481-1497.
    • (1990) Proc. of IEEE , vol.75 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 8
    • 0027629412 scopus 로고
    • Rival penalized competitive learning for clustering analysis, rbf net and curve detection
    • L. Xu, A.Krzyzak, and E.Oja, Rival Penalized Competitive Learning for Clustering Analysis, RBF net and Curve Detection, IEEE Trans, on Neural Networks 4(4)(1993), 636649.
    • (1993) IEEE Trans, on Neural Networks , vol.4 , Issue.4 , pp. 636649
    • Xu, L.1    Krzyzak, A.2    Oja, E.3
  • 10
    • 0005906827 scopus 로고
    • Ying-yang machine: A bayesian-kullback scheme for unified learnings and new results on vector quantization
    • Oct 30-Nov. 3
    • L. Xu, YING-YANG Machine: a Bayesian-Kullback scheme for unified learnings and new results on vector quantization, Keynote talk, Proc. Intl Conf. on Neural Information Processing (ICONIP95), Oct 30-Nov. 3, (1995), 97-988.
    • (1995) Keynote Talk, Proc. Intl Conf. on Neural Information Processing (ICONIP95 , pp. 97-988
    • Xu, L.1
  • 11
    • 85140116568 scopus 로고    scopus 로고
    • An alternative model for mixtures of experts
    • eds., Cowan, J.D., Tesauro, G, and Al-spector, L, (MIT Press
    • L. Xu, M.I.Jordan, &G.E.Hinton, An Alternative Model for Mixtures of Experts, Advances in Neural Information Processing Systems 7, eds., Cowan, J.D., Tesauro, G, and Al-spector, L, (MIT Press, 1996), 633-640.
    • (1996) Advances in Neural Information Processing Systems , vol.7 , pp. 633-640
    • Xu, L.1    Jordan, M.I.2    Hinton, G.E.3
  • 12
    • 0037922029 scopus 로고    scopus 로고
    • Bayesian-kullback ying-yang learning scheme: Reviews and new results
    • Sept. 24-27, Springer-Verlag
    • L. Xu, Bayesian-Kullback YING-YANG Learning Scheme: Reviews and New Results, Proc. Intl Conf. on Neural Information Processing (ICONIP96), Sept. 24-27, (Springer-Verlag, 1996), 59-67.
    • (1996) Proc. Intl Conf. on Neural Information Processing (ICONIP96 , pp. 59-67
    • Xu, L.1
  • 13
    • 0006005149 scopus 로고    scopus 로고
    • System and Theory as A Unified Statistical Learning Approach: (I) Unsupervised and Semi-Unsupervised Learning S. Amari and N. Kassabov eds., Springer-Verlag
    • Xu, L., "Bayesian Ying-Yang System and Theory as A Unified Statistical Learning Approach: (I) Unsupervised and Semi-Unsupervised Learning", Invited paper, ", S. Amari and N. Kassabov eds., Brain-like Computing and Intelligent Information Systems, 1997, Springer-Verlag, pp241-274.
    • (1997) Invited paper brain-like computing and intelligent information systems , pp. 241-274
    • Xu, L.1    Bayesian, Y.-Y.2
  • 14
    • 0038259620 scopus 로고    scopus 로고
    • Bayesian ying-yang system and theory as a unified statistical learning approach (ii): From unsupervised learning to supervised learning and temporal modeling &(iii) models and algorithms for dependence reduction, data dimension reduction, ica and supervised learning
    • May 26-28, Hong Kong, Springer-Verlag
    • Xu, L., " Bayesian Ying-Yang System and Theory as A Unified Statistical Learning Approach (II): From Unsupervised Learning to Supervised Learning and Temporal Modeling &(III) Models and Algorithms for Dependence Reduction, Data Dimension Reduction, ICA and Supervised Learning ", Invited paper, Lecture Notes in Computer Science: Proc. of Intl Workshop on Theoretical Aspects of Neural Computation, May 26-28, 1997, Hong Kong, Springer-Verlag, pp25-42.
    • (1997) Invited Paper, Lecture Notes in Computer Science: Proc. of Intl Workshop on Theoretical Aspects of Neural Computation , pp. 25-42
    • Xu, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.