-
1
-
-
1542297992
-
The summation of rational functions
-
Abramov S. A.: The summation of rational functions. Zh. Vychisl. Mat. Mat. Fiz. 11, 1071-1075 (1971).
-
(1971)
Zh. Vychisl. Mat. Mat. Fiz.
, vol.11
, pp. 1071-1075
-
-
Abramov, S.A.1
-
2
-
-
0038625414
-
When does Zeilberger's algorithm succeed?
-
Abramov S. A.: When does Zeilberger's algorithm succeed?. Adv. Appl. Math. 30(3), 424-441 (2003).
-
(2003)
Adv. Appl. Math.
, vol.30
, Issue.3
, pp. 424-441
-
-
Abramov, S.A.1
-
3
-
-
0036338534
-
Rational normal forms and minimal decompositions of hypergeometric terms
-
Abramov S. A., Petkovšek M.: Rational normal forms and minimal decompositions of hypergeometric terms. J. Symbolic Comput. 33(5), 521-543 (2002).
-
(2002)
J. Symbolic Comput.
, vol.33
, Issue.5
, pp. 521-543
-
-
Abramov, S.A.1
Petkovšek, M.2
-
4
-
-
0042545136
-
Multibasic and mixed hypergeometric Gosper-type algorithms
-
Bauer A., Petkovšek M.: Multibasic and mixed hypergeometric Gosper-type algorithms. J. Symbolic Comput. 28(4-5), 711-736 (1999).
-
(1999)
J. Symbolic Comput.
, vol.28
, Issue.4-5
, pp. 711-736
-
-
Bauer, A.1
Petkovšek, M.2
-
5
-
-
0041684683
-
On solutions of linear ordinary difference equations in their coefficient field
-
Bronstein M.: On solutions of linear ordinary difference equations in their coefficient field. J. Symbolic Comput. 29(6), 841-877 (2000).
-
(2000)
J. Symbolic Comput.
, vol.29
, Issue.6
, pp. 841-877
-
-
Bronstein, M.1
-
6
-
-
0038840100
-
Decision procedures for indefinite hypergeometric summation
-
Gosper R. W.: Decision procedures for indefinite hypergeometric summation. Proc. Nat. Acad. Sci. USA 75(1), 40-42 (1978).
-
(1978)
Proc. Nat. Acad. Sci. USA
, vol.75
, Issue.1
, pp. 40-42
-
-
Gosper, R.W.1
-
7
-
-
84976849768
-
Summation in finite terms
-
Karr M.: Summation in finite terms. J. Assoc. Comput. Mach. 28(2), 305-350 (1981).
-
(1981)
J. Assoc. Comput. Mach.
, vol.28
, Issue.2
, pp. 305-350
-
-
Karr, M.1
-
8
-
-
79952702132
-
A canonical form guide to symbolic summation
-
A. Miola and M. Temperini (Eds.), Vienna: Springer
-
Paule P., Nemes I.: A canonical form guide to symbolic summation. In: Miola, A., Temperini, M. (eds) Advances in the Design of Symbolic Computation Systems, pp. 84-110. Springer, Vienna (1997).
-
(1997)
Advances in the Design of Symbolic Computation Systems
, pp. 84-110
-
-
Paule, P.1
Nemes, I.2
-
9
-
-
0001511724
-
Greatest factorial factorization and symbolic summation
-
Paule P.: Greatest factorial factorization and symbolic summation. J. Symbolic Comput. 20(3), 235-268 (1995).
-
(1995)
J. Symbolic Comput.
, vol.20
, Issue.3
, pp. 235-268
-
-
Paule, P.1
-
11
-
-
0001487910
-
A Mathematica q-analogue of Zeilberger's algorithm based on an algebraically motivated aproach to q-hypergeometric telescoping
-
In: Ismail, M., Rahman, M. (eds.), AMS, Providence, RI
-
Paule, P., Riese, A.: A Mathematica q-analogue of Zeilberger's algorithm based on an algebraically motivated aproach to q-hypergeometric telescoping. In: Ismail, M., Rahman, M. (eds.) Special Functions, q-Series and Related Topics, Fields Inst. Commun., 14, pp. 179-210. AMS, Providence, RI (1997).
-
(1997)
Special Functions, q-Series and Related Topics, Fields Inst. Commun.
, vol.14
, pp. 179-210
-
-
Paule, P.1
Riese, A.2
-
12
-
-
0000210471
-
A Mathematica version of Zeilberger's algorithm for proving binomial coefficient identities
-
Paule P., Schorn M.: A Mathematica version of Zeilberger's algorithm for proving binomial coefficient identities. J. Symbolic Comput. 20(5-6), 673-698 (1995).
-
(1995)
J. Symbolic Comput.
, vol.20
, Issue.5-6
, pp. 673-698
-
-
Paule, P.1
Schorn, M.2
-
13
-
-
0141838153
-
Computer proofs of a new family of harmonic number identities
-
Paule P., Schneider C.: Computer proofs of a new family of harmonic number identities. Adv. Appl. Math. 31(2), 359-378 (2003).
-
(2003)
Adv. Appl. Math.
, vol.31
, Issue.2
, pp. 359-378
-
-
Paule, P.1
Schneider, C.2
-
14
-
-
79952693868
-
-
A = B. A. K. Peters, Ltd., Wellesley, MA
-
Petkovšek, M., Wilf, H. S., Zeilberger, D.: A = B. A. K. Peters, Ltd., Wellesley, MA (1996).
-
(1996)
-
-
Petkovšek, M.1
Wilf, H.S.2
Zeilberger, D.3
-
16
-
-
48349111400
-
A collection of denominator bounds to solve parameterized linear difference equations in πΣ-extensions
-
Schneider C.: A collection of denominator bounds to solve parameterized linear difference equations in ΠΣ-extensions. An. Univ. Timişoara Ser. Mat.-Inform. 42(2), 163-179 (2004).
-
(2004)
An. Univ. Timişoara Ser. Mat.-Inform.
, vol.42
, Issue.2
, pp. 163-179
-
-
Schneider, C.1
-
17
-
-
15844368051
-
The summation package Sigma: underlying principles and a rhombus tiling application
-
Schneider C.: The summation package Sigma: underlying principles and a rhombus tiling application. Discrete Math. Theor. Comput. Sci. 6(2), 365-386 (2004).
-
(2004)
Discrete Math. Theor. Comput. Sci.
, vol.6
, Issue.2
, pp. 365-386
-
-
Schneider, C.1
-
18
-
-
15844414168
-
Degree bounds to find polynomial solutions of parameterized linear difference equations in πΣ-fields
-
Schneider C.: Degree bounds to find polynomial solutions of parameterized linear difference equations in ΠΣ-fields. Appl. Algebra Engrg. Comm. Comput. 16(1), 1-32 (2005).
-
(2005)
Appl. Algebra Engrg. Comm. Comput.
, vol.16
, Issue.1
, pp. 1-32
-
-
Schneider, C.1
-
19
-
-
15844383473
-
Product representations in πΣ-fields
-
Schneider C.: Product representations in ΠΣ-fields. Ann. Combin. 9(1), 75-99 (2005).
-
(2005)
Ann. Combin.
, vol.9
, Issue.1
, pp. 75-99
-
-
Schneider, C.1
-
20
-
-
24344486864
-
Solving parameterized linear difference equations in terms of indefinite nested sums and products
-
Schneider C.: Solving parameterized linear difference equations in terms of indefinite nested sums and products. J. Differ. Equations Appl. 11(9), 799-821 (2005).
-
(2005)
J. Differ. Equations Appl.
, vol.11
, Issue.9
, pp. 799-821
-
-
Schneider, C.1
-
21
-
-
42649098957
-
Simplifying Sums in πΣ*-Extensions
-
Schneider C.: Simplifying Sums in ΠΣ*-Extensions. J. Algebra Appl. 6(3), 415-441 (2007).
-
(2007)
J. Algebra Appl.
, vol.6
, Issue.3
, pp. 415-441
-
-
Schneider, C.1
-
22
-
-
33846672625
-
Symbolic summation assists combinatorics
-
Schneider, C.: Symbolic summation assists combinatorics. Sém. Lothar. Combin. 56:#B56b. (2007).
-
(2007)
Sém. Lothar. Combin.
, vol.56
-
-
Schneider, C.1
-
23
-
-
42649097573
-
A refined difference field theory for symbolic summation
-
Schneider C.: A refined difference field theory for symbolic summation. J. Symbolic Comput. 43(9), 611-644 (2008).
-
(2008)
J. Symbolic Comput.
, vol.43
, Issue.9
, pp. 611-644
-
-
Schneider, C.1
-
24
-
-
65749309992
-
A proof that Euler missed. . . Apéry's proof of the irrationality of ζ(3)
-
van der Poorten, A.: A proof that Euler missed. . . Apéry's proof of the irrationality of ζ(3). Math. Intelligencer 1(4), 195-203 (1979).
-
(1979)
Math. Intelligencer
, vol.1
, Issue.4
, pp. 195-203
-
-
van der Poorten, A.1
-
25
-
-
73949145301
-
The method of creative telescoping
-
Zeilberger D.: The method of creative telescoping. J. Symbolic Comput. 11(3), 195-204 (1991).
-
(1991)
J. Symbolic Comput.
, vol.11
, Issue.3
, pp. 195-204
-
-
Zeilberger, D.1
|