메뉴 건너뛰기




Volumn 33, Issue 1, 2011, Pages 85-91

Benford's Law Strikes Back: No Simple Explanation in Sight for Mathematical Gem

Author keywords

[No Author keywords available]

Indexed keywords


EID: 79952242902     PISSN: 03436993     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00283-010-9182-3     Document Type: Article
Times cited : (79)

References (19)
  • 1
    • 79952247780 scopus 로고    scopus 로고
    • When Can One Test an Explanation? Compare and Contrast Benford's Law and the Fuzzy CLT
    • Class project report dated May 11, 2009,accessed on May 14, 2010, at [BH]
    • Aldous, D., and Phan, T. (2009), "When Can One Test an Explanation? Compare and Contrast Benford's Law and the Fuzzy CLT", Class project report dated May 11, 2009, Statistics Department, UC Berkeley; accessed on May 14, 2010, at [BH].
    • (2009) Statistics Department, UC Berkeley
    • Aldous, D.1    Phan, T.2
  • 2
    • 78649420991 scopus 로고    scopus 로고
    • When Can One Test an Explanation? Compare and Contrast Benford's Law and the Fuzzy CLT
    • accessed on May 14, 2010, at [BH],Preprint dated Jan. 3,2010
    • Aldous, D., and Phan, T. (2010), "When Can One Test an Explanation? Compare and Contrast Benford's Law and the Fuzzy CLT", Preprint dated Jan. 3, 2010, Statistics Department, UC Berkeley; accessed on May 14, 2010, at [BH].
    • (2010) Statistics Department, UC Berkeley
    • Aldous, D.1    Phan, T.2
  • 4
    • 79952244815 scopus 로고    scopus 로고
    • Large Spread Does Not Imply Benford's Law
    • accessed on May 14, 2010
    • Berger, A. (2010), "Large Spread Does Not Imply Benford's Law", Preprint; accessed on May 14, 2010, at http://www. math. ualberta. ca/~aberger/Publications. html.
    • (2010) Preprint
    • Berger, A.1
  • 5
    • 12744263576 scopus 로고    scopus 로고
    • One-dimensional Dynamical Systems and Benford's Law
    • Berger, A., Bunimovich, L., and Hill, T. P. (2005), "One-dimensional Dynamical Systems and Benford's Law", Trans. Amer. Math. Soc. 357, 197-219.
    • (2005) Trans. Amer. Math. Soc. , vol.357 , pp. 197-219
    • Berger, A.1    Bunimovich, L.2    Hill, T.P.3
  • 8
    • 63549150030 scopus 로고    scopus 로고
    • A Simple Explanation of Benford's Law
    • Fewster, R. (2009), "A Simple Explanation of Benford's Law", American Statistician 63(1), 20-25.
    • (2009) American Statistician , vol.63 , Issue.1 , pp. 20-25
    • Fewster, R.1
  • 9
    • 3042516555 scopus 로고
    • Mathematical Games: Problems involving questions of probability and ambiguity
    • Gardner, M. (1959), "Mathematical Games: Problems involving questions of probability and ambiguity", Scientific American 201, 174-182.
    • (1959) Scientific American , vol.201 , pp. 174-182
    • Gardner, M.1
  • 10
    • 79952250602 scopus 로고    scopus 로고
    • Loi de Benford générale
    • accessed May 14, 2010
    • Gauvrit, N., and Delahaye, J. P. (2009), "Loi de Benford générale", Mathématiques et sciences humaines 186, 5-15; accessed May 14, 2010, at http://msh. revues. org/document11034. html.
    • (2009) Mathématiques et sciences humaines , vol.186 , pp. 5-15
    • Gauvrit, N.1    Delahaye, J.P.2
  • 11
    • 84966250122 scopus 로고
    • Base-Invariance Implies Benford's Law
    • Hill, T. P. (1995), "Base-Invariance Implies Benford's Law", Proc. Amer. Math. Soc. 123(3), 887-895.
    • (1995) Proc. Amer. Math. Soc. , vol.123 , Issue.3 , pp. 887-895
    • Hill, T.P.1
  • 12
    • 84972541029 scopus 로고
    • A Statistical Derivation of the Significant-Digit Law
    • Hill, T. P. (1995), "A Statistical Derivation of the Significant-Digit Law", Statistical Science 10(4), 354-363.
    • (1995) Statistical Science , vol.10 , Issue.4 , pp. 354-363
    • Hill, T.P.1
  • 13
    • 0003657590 scopus 로고    scopus 로고
    • 3rd edn., Reading MA: Addison-Wesley
    • Knuth, D. (1997), The Art of Computer Programming, pp. 253-264, vol. 2, 3rd ed, Addison-Wesley, Reading, MA.
    • (1997) The Art of Computer Programming , vol.2 , pp. 253-264
    • Knuth, D.1
  • 14
    • 0003038640 scopus 로고
    • Note on the Frequency of Use of the Different Digits in Natural Numbers
    • Newcomb, S. (1881), "Note on the Frequency of Use of the Different Digits in Natural Numbers", Amer. J. Math. 4(1), 39-40.
    • (1881) Amer. J. Math. , vol.4 , Issue.1 , pp. 39-40
    • Newcomb, S.1
  • 15
    • 0000109243 scopus 로고
    • On the Distribution of First Significant Digits
    • Pinkham, R. (1961), "On the Distribution of First Significant Digits", Annals of Mathematical Statistics 32(4), 1223-1230.
    • (1961) Annals of Mathematical Statistics , vol.32 , Issue.4 , pp. 1223-1230
    • Pinkham, R.1
  • 16
    • 0001295471 scopus 로고
    • The First Digit Problem
    • Raimi, R. (1976), "The First Digit Problem", Amer. Mathematical Monthly 83(7), 521-538.
    • (1976) Amer. Mathematical Monthly , vol.83 , Issue.7 , pp. 521-538
    • Raimi, R.1
  • 17
    • 84928224513 scopus 로고
    • The First Digit Phenomenon Again
    • Raimi, R. (1985), "The First Digit Phenomenon Again", Proc. Amer. Philosophical Soc. 129, 211-219.
    • (1985) Proc. Amer. Philosophical Soc. , vol.129 , pp. 211-219
    • Raimi, R.1
  • 19
    • 79952248448 scopus 로고    scopus 로고
    • accessed May 14, 2010
    • Wagon, S. (2010), "Benford's Law and Data Spread"; accessed May 14, 2010, at http://demonstrations. wolfram. com/BenfordsLawAndDataSpread.
    • (2010) Benford's Law and Data Spread
    • Wagon, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.