메뉴 건너뛰기




Volumn 53, Issue 2, 2011, Pages 190-201

Leveraging external knowledge on molecular interactions in classification methods for risk prediction of patients

Author keywords

Classification; Gene expression data; Pathway knowledge; Risk prediction

Indexed keywords

CLUSTERING ALGORITHMS; COMPUTER AIDED DIAGNOSIS; FEATURE SELECTION; KNOWLEDGE MANAGEMENT; PATIENT TREATMENT; REGRESSION ANALYSIS;

EID: 79952239478     PISSN: 03233847     EISSN: 15214036     Source Type: Journal    
DOI: 10.1002/bimj.201000155     Document Type: Article
Times cited : (17)

References (55)
  • 1
    • 77952478860 scopus 로고    scopus 로고
    • Prediction of breast cancer prognosis using gene set statistics provides signature stability and biological context
    • Abraham, G., Kowalczyk, A., Loi, S., Haviv, I. and Zobel, J. (2010). Prediction of breast cancer prognosis using gene set statistics provides signature stability and biological context. BMC Bioinformatics 11, 277.
    • (2010) BMC Bioinformatics , vol.11 , pp. 277
    • Abraham, G.1    Kowalczyk, A.2    Loi, S.3    Haviv, I.4    Zobel, J.5
  • 2
    • 58149460574 scopus 로고    scopus 로고
    • Literature mining in support of drug discovery
    • Agarwal, P. and Searls, D. B. (2008). Literature mining in support of drug discovery. Briefings in Bioinformatics 9, 479-492.
    • (2008) Briefings in Bioinformatics , vol.9 , pp. 479-492
    • Agarwal, P.1    Searls, D.B.2
  • 5
    • 33747890811 scopus 로고    scopus 로고
    • Interpreting experimental results using gene ontologies
    • Beißbarth, T. (2006). Interpreting experimental results using gene ontologies. Methods in Enzymology 411, 340-352.
    • (2006) Methods in Enzymology , vol.411 , pp. 340-352
    • Beißbarth, T.1
  • 6
    • 85153307575 scopus 로고    scopus 로고
    • GAMBoost: Generalized Linear and Additive Models by Likelihood Based Boosting. R package version 1.1.
    • Binder, H. (2009). GAMBoost: Generalized Linear and Additive Models by Likelihood Based Boosting. R package version 1.1.
    • (2009)
    • Binder, H.1
  • 7
    • 61449157892 scopus 로고    scopus 로고
    • Incorporating pathway information into boosting estimation of high-dimensional risk prediction models
    • Binder, H. and Schumacher, M. (2009). Incorporating pathway information into boosting estimation of high-dimensional risk prediction models. BMC Bioinformatics 10, 18.
    • (2009) BMC Bioinformatics , vol.10 , pp. 18
    • Binder, H.1    Schumacher, M.2
  • 8
    • 33846515112 scopus 로고    scopus 로고
    • Partial least squares: a versatile tool for the analysis of high-dimensional genomic data
    • Boulesteix, A.-L. and Strimmer, K. (2007). Partial least squares: a versatile tool for the analysis of high-dimensional genomic data. Briefings in Bioinformatics 8, 32-44.
    • (2007) Briefings in Bioinformatics , vol.8 , pp. 32-44
    • Boulesteix, A.-L.1    Strimmer, K.2
  • 10
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001). Random forests. Machine Learning 45, 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 11
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2, 121-167.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.1
  • 13
    • 0034264380 scopus 로고    scopus 로고
    • Bounds on error expectation for support vector machines
    • Chapelle, O. and Vapnik, V. (2000). Bounds on error expectation for support vector machines. Neural Computation 12, 2013-2036.
    • (2000) Neural Computation , vol.12 , pp. 2013-2036
    • Chapelle, O.1    Vapnik, V.2
  • 14
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle, O., Vapnik, V., Bousquet, O. and Mukherjee, S. (2002). Choosing multiple parameters for support vector machines. Machine Learning 46, 131-159.
    • (2002) Machine Learning , vol.46 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 15
    • 77954541112 scopus 로고    scopus 로고
    • An integrative pathway-based clinical-genomic model for cancer survival prediction
    • Chen, X., Wang, L. and Ishwaran, H. (2010). An integrative pathway-based clinical-genomic model for cancer survival prediction. Statistics and Probability Letters 80, 1313-1319.
    • (2010) Statistics and Probability Letters , vol.80 , pp. 1313-1319
    • Chen, X.1    Wang, L.2    Ishwaran, H.3
  • 18
    • 23144448699 scopus 로고    scopus 로고
    • GoPubMed: exploring PubMed with the Gene Ontology
    • Doms, A. and Schroeder, M. (2005). GoPubMed: exploring PubMed with the Gene Ontology. Nucleic Acids Research 33, W783-W786.
    • (2005) Nucleic Acids Research , vol.33
    • Doms, A.1    Schroeder, M.2
  • 20
    • 0003790582 scopus 로고    scopus 로고
    • Multivariate Statistical Modelling Based on Generalized Linear Models
    • (2nd edn.) Springer, New York.
    • Fahrmeir, L. and Tutz, G. (2001). Multivariate Statistical Modelling Based on Generalized Linear Models (2nd edn.) Springer, New York.
    • (2001)
    • Fahrmeir, L.1    Tutz, G.2
  • 21
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 96, 1348-1360.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 23
    • 34250764323 scopus 로고    scopus 로고
    • GOSim - an R-package for computation of information theoretic GO similarities between terms and gene products
    • Fröhlich, H., Speer, N., Poustka, A. and Beißbarth, T. (2007). GOSim - an R-package for computation of information theoretic GO similarities between terms and gene products. BMC Bioinformatics 8, 166.
    • (2007) BMC Bioinformatics , vol.8 , pp. 166
    • Fröhlich, H.1    Speer, N.2    Poustka, A.3    Beißbarth, T.4
  • 24
    • 37849009181 scopus 로고    scopus 로고
    • Emerging applications of network and pathway analysis in drug discovery and development
    • Ganter, B. and Giroux, C. N. (2008). Emerging applications of network and pathway analysis in drug discovery and development. Current Opinion in Drug Discovery and Development 11, 86-94.
    • (2008) Current Opinion in Drug Discovery and Development , vol.11 , pp. 86-94
    • Ganter, B.1    Giroux, C.N.2
  • 25
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I., Weston, J., Barnhill, S. and Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning 46, 389-422.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 26
    • 0003684449 scopus 로고    scopus 로고
    • The Elements of Statistical Learning: Data Mining, Inference, and Prediction
    • (2nd edn.) Springer, New York.
    • Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd edn.) Springer, New York.
    • (2009)
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 27
    • 31144432293 scopus 로고    scopus 로고
    • Literature mining for the biologist: from information retrieval to biological discovery
    • Jensen, L. J., Saric, J. and Bork, P. (2006). Literature mining for the biologist: from information retrieval to biological discovery. Nature Reviews Genetics 7, 119-129.
    • (2006) Nature Reviews Genetics , vol.7 , pp. 119-129
    • Jensen, L.J.1    Saric, J.2    Bork, P.3
  • 28
    • 85153179852 scopus 로고    scopus 로고
    • pathClass: classification using biological pathways as prior knowledge. R package version 0.8.
    • Johannes, M. (2010). pathClass: classification using biological pathways as prior knowledge. R package version 0.8.
    • (2010)
    • Johannes, M.1
  • 29
    • 77955886691 scopus 로고    scopus 로고
    • Integration of pathway knowledge into a reweighted recursive feature elimination approach for risk stratification of cancer patients
    • Johannes, M., Brase, J. C., Fröhlich, H., Gade, S., Gehrmann, M., Fälth, M., Sültmann, H. and Beißbarth, T. (2010). Integration of pathway knowledge into a reweighted recursive feature elimination approach for risk stratification of cancer patients. Bioinformatics 26, 2136-2144.
    • (2010) Bioinformatics , vol.26 , pp. 2136-2144
    • Johannes, M.1    Brase, J.C.2    Fröhlich, H.3    Gade, S.4    Gehrmann, M.5    Fälth, M.6    Sültmann, H.7    Beißbarth, T.8
  • 30
    • 58149194611 scopus 로고    scopus 로고
    • ConsensusPathDB - a database for integrating human functional interaction networks
    • Kamburov, A., Wierling, C., Lehrach, H. and Herwig, R. (2009). ConsensusPathDB - a database for integrating human functional interaction networks. Nucleic Acids Research 37, D623-D628.
    • (2009) Nucleic Acids Research , vol.37
    • Kamburov, A.1    Wierling, C.2    Lehrach, H.3    Herwig, R.4
  • 31
    • 75549090213 scopus 로고    scopus 로고
    • KEGG for representation and analysis of molecular networks involving diseases and drugs
    • Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M. and Hirakawa, M. (2010). KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Research 38, D355-D360.
    • (2010) Nucleic Acids Research , vol.38
    • Kanehisa, M.1    Goto, S.2    Furumichi, M.3    Tanabe, M.4    Hirakawa, M.5
  • 32
    • 42649140560 scopus 로고    scopus 로고
    • Network-constrained regularization and variable selection for analysis of genomic data
    • Li, C. and Li, H. (2008). Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics 24, 1175-1182.
    • (2008) Bioinformatics , vol.24 , pp. 1175-1182
    • Li, C.1    Li, H.2
  • 33
    • 85153240474 scopus 로고    scopus 로고
    • ALL: a data package. R package version 1.4.7.
    • Li, X. (2009). ALL: a data package. R package version 1.4.7.
    • (2009)
    • Li, X.1
  • 34
    • 18744414232 scopus 로고    scopus 로고
    • Molecular decomposition of complex clinical phenotypes using biologically structured analysis of microarray data
    • Lottaz, C. and Spang, R. (2005). Molecular decomposition of complex clinical phenotypes using biologically structured analysis of microarray data. Bioinformatics 21, 1971-1978.
    • (2005) Bioinformatics , vol.21 , pp. 1971-1978
    • Lottaz, C.1    Spang, R.2
  • 36
    • 27644503675 scopus 로고    scopus 로고
    • GeneRank: using search engine technology for the analysis of microarray experiments
    • Morrison, J. L., Breitling, R., Higham, D. J. and Gilbert, D. R. (2005). GeneRank: using search engine technology for the analysis of microarray experiments. BMC Bioinformatics 6, 233.
    • (2005) BMC Bioinformatics , vol.6 , pp. 233
    • Morrison, J.L.1    Breitling, R.2    Higham, D.J.3    Gilbert, D.R.4
  • 37
    • 77950344077 scopus 로고    scopus 로고
    • Knowledge-based data analysis comes of age
    • Ochs, M. F. (2009). Knowledge-based data analysis comes of age. Briefings in Bioinformatics 11, 30-39.
    • (2009) Briefings in Bioinformatics , vol.11 , pp. 30-39
    • Ochs, M.F.1
  • 38
    • 77952976255 scopus 로고    scopus 로고
    • Incorporating predictor network in penalized regression with application to microarray data
    • Pan, W., Xie, B. and Shen, X. (2010). Incorporating predictor network in penalized regression with application to microarray data. Biometrics 66, 474-484.
    • (2010) Biometrics , vol.66 , pp. 474-484
    • Pan, W.1    Xie, B.2    Shen, X.3
  • 39
    • 77950510575 scopus 로고    scopus 로고
    • Pathway analysis using random forests with bivariate node-split for survival outcomes
    • Pang, H., Datta, D. and Zhao, H. (2009). Pathway analysis using random forests with bivariate node-split for survival outcomes. Bioinformatics 26, 250-258.
    • (2009) Bioinformatics , vol.26 , pp. 250-258
    • Pang, H.1    Datta, D.2    Zhao, H.3
  • 43
    • 0004094721 scopus 로고    scopus 로고
    • Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
    • MIT Press, Cambridge, MA.
    • Schölkopf, B. and Smola, A. J. (2001). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA.
    • (2001)
    • Schölkopf, B.1    Smola, A.J.2
  • 44
    • 85153221800 scopus 로고    scopus 로고
    • Bayesian Statistics 9
    • Bernardo, J. M., Bayarri, M. J., Berger, J., Dawid, A., Heckerman, D., Smith, A. F. M. and West, M. editors, Oxford University Press, Oxford.
    • Stingo, F. C. and Vannucci, M. (2010). Bayesian models for variable selection that incorporate biological information. In: Bernardo, J. M., Bayarri, M. J., Berger, J., Dawid, A., Heckerman, D., Smith, A. F. M. and West, M. editors, Bayesian Statistics 9. Oxford University Press, Oxford.
    • (2010) Bayesian models for variable selection that incorporate biological information
    • Stingo, F.C.1    Vannucci, M.2
  • 45
    • 0034069495 scopus 로고    scopus 로고
    • Gene Ontology: tool for the unification of biology
    • The Gene Ontology Consortium.
    • The Gene Ontology Consortium (2000). Gene Ontology: tool for the unification of biology. Nature Genetics 25, 25-29.
    • (2000) Nature Genetics , vol.25 , pp. 25-29
  • 48
    • 44449173120 scopus 로고    scopus 로고
    • Semantically linking and browsing PubMed abstracts with gene ontology
    • Vanteru, B. C., Shaik, J. S. and Yeasin, M. (2008). Semantically linking and browsing PubMed abstracts with gene ontology. BMC Genomics 9, S10.
    • (2008) BMC Genomics , vol.9
    • Vanteru, B.C.1    Shaik, J.S.2    Yeasin, M.3
  • 49
    • 0003450542 scopus 로고
    • The Nature of Statistical Learning Theory
    • Springer, New York, Inc., New York, NY, USA.
    • Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer, New York, Inc., New York, NY, USA.
    • (1995)
    • Vapnik, V.1
  • 50
    • 34147120136 scopus 로고    scopus 로고
    • Nonparametric pathway-based regression models for analysis of genomic data
    • Wei, Z. and Li, H. (2007). Nonparametric pathway-based regression models for analysis of genomic data. Biostatistics 8, 265-284.
    • (2007) Biostatistics , vol.8 , pp. 265-284
    • Wei, Z.1    Li, H.2
  • 51
    • 46049087782 scopus 로고    scopus 로고
    • The TRANSFAC project as an example of framework technology that supports the analysis of genomic regulation
    • Wingender, E. (2008). The TRANSFAC project as an example of framework technology that supports the analysis of genomic regulation. Briefings in Bioinformatics 9, 326-332.
    • (2008) Briefings in Bioinformatics , vol.9 , pp. 326-332
    • Wingender, E.1
  • 52
    • 73449129315 scopus 로고    scopus 로고
    • Prior biological knowledge-based approaches for the analysis of genome-wide expression profiles using gene sets and pathways
    • Wu, M. C. and Lin, X. (2009). Prior biological knowledge-based approaches for the analysis of genome-wide expression profiles using gene sets and pathways. Statistical Methods in Medical Research 18, 577-593.
    • (2009) Statistical Methods in Medical Research , vol.18 , pp. 577-593
    • Wu, M.C.1    Lin, X.2
  • 53
    • 70349254460 scopus 로고    scopus 로고
    • Improved detection of differentially expressed genes through incorporation of gene locations
    • Xiao, G., Reilly, C. and Khodursky, A. B. (2009). Improved detection of differentially expressed genes through incorporation of gene locations. Biometrics 65, 805-814.
    • (2009) Biometrics , vol.65 , pp. 805-814
    • Xiao, G.1    Reilly, C.2    Khodursky, A.B.3
  • 54
    • 60849121073 scopus 로고    scopus 로고
    • Network-based support vector machine for classification of microarray samples
    • Zhu, Y., Shen, X. and Pan, W. (2009). Network-based support vector machine for classification of microarray samples. BMC Bioinformatics 10, S21.
    • (2009) BMC Bioinformatics , vol.10
    • Zhu, Y.1    Shen, X.2    Pan, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.