-
1
-
-
33750295344
-
Equilibrium points, stability and numerical solutions of fractional order predator-prey and rabies models
-
Ahmed E., El-Sayed A.M.A., El-Saka H.A.A. Equilibrium points, stability and numerical solutions of fractional order predator-prey and rabies models. J. Math. Anal. Appl. 2007, 325:542-553.
-
(2007)
J. Math. Anal. Appl.
, vol.325
, pp. 542-553
-
-
Ahmed, E.1
El-Sayed, A.M.A.2
El-Saka, H.A.A.3
-
2
-
-
0007280433
-
Stable limit cycles in predator-prey populations
-
Albrecht F., Gatzke H., Wax N. Stable limit cycles in predator-prey populations. Science 1973, 181:1073-1074.
-
(1973)
Science
, vol.181
, pp. 1073-1074
-
-
Albrecht, F.1
Gatzke, H.2
Wax, N.3
-
3
-
-
4944258042
-
Coupling in predator-prey dynamics: ratio-dependence
-
Arditi R., Ginzburg R. Coupling in predator-prey dynamics: ratio-dependence. J. Theor. Biol. 1989, 139:311-326.
-
(1989)
J. Theor. Biol.
, vol.139
, pp. 311-326
-
-
Arditi, R.1
Ginzburg, R.2
-
4
-
-
0027100815
-
Empirical evidence of the role of heterogeneity in ratio dependent consumption
-
Arditi R., Saiah H. Empirical evidence of the role of heterogeneity in ratio dependent consumption. Ecology 1992, 73:1544-1551.
-
(1992)
Ecology
, vol.73
, pp. 1544-1551
-
-
Arditi, R.1
Saiah, H.2
-
5
-
-
0035460669
-
Parametric analysis of the ratio dependent predator-prey model
-
Berezovskaya F., Karev G., Arditi R. Parametric analysis of the ratio dependent predator-prey model. J. Math. Biol. 2001, 43:221-246.
-
(2001)
J. Math. Biol.
, vol.43
, pp. 221-246
-
-
Berezovskaya, F.1
Karev, G.2
Arditi, R.3
-
6
-
-
0032058512
-
Global analysis in some delayed ratio-dependent predator-prey systems
-
Berreta E., Kuang Y. Global analysis in some delayed ratio-dependent predator-prey systems. Nonlin. Anal. TMA 1998, 32:381-408.
-
(1998)
Nonlin. Anal. TMA
, vol.32
, pp. 381-408
-
-
Berreta, E.1
Kuang, Y.2
-
7
-
-
59649123579
-
Dynamic transcritical bifurcations in a class of slow-fast predator-prey models
-
Boudjellaba H., Sari T. Dynamic transcritical bifurcations in a class of slow-fast predator-prey models. J. Diff. Eq. 2009, 246:2205-2225.
-
(2009)
J. Diff. Eq.
, vol.246
, pp. 2205-2225
-
-
Boudjellaba, H.1
Sari, T.2
-
9
-
-
77954072067
-
An approximate analytical solution of the fractional diffusion equation with absorbent term and external force by homotopy perturbation method
-
Das S., Gupta P.K. An approximate analytical solution of the fractional diffusion equation with absorbent term and external force by homotopy perturbation method. Z. Fur. Naturforsch. Sec. 2010, 65a:182-190.
-
(2010)
Z. Fur. Naturforsch. Sec.
, vol.65 A
, pp. 182-190
-
-
Das, S.1
Gupta, P.K.2
-
10
-
-
70349602750
-
A fractional predator prey model and its solution
-
Das S., Gupta P.K., Rajeev A fractional predator prey model and its solution. Int. J. Nonlin. Sci. Numer. Simul. 2009, 10:873-876.
-
(2009)
Int. J. Nonlin. Sci. Numer. Simul.
, vol.10
, pp. 873-876
-
-
Das, S.1
Gupta, P.K.2
-
11
-
-
79953050752
-
Approximate approach to the Das model of fractional logistic population growth
-
Das S., Gupta P.K., Vishal K. Approximate approach to the Das model of fractional logistic population growth. Appl. Appl. Math. 2010, 5(10):1702-1708.
-
(2010)
Appl. Appl. Math.
, vol.5
, Issue.10
, pp. 1702-1708
-
-
Das, S.1
Gupta, P.K.2
Vishal, K.3
-
13
-
-
35548976759
-
Group formation stabilizes predator-prey dynamics
-
Fryxell J.M., Mosser A., Sinclair A.R.E., Packer C. Group formation stabilizes predator-prey dynamics. Nature 2007, 449:1041-1043.
-
(2007)
Nature
, vol.449
, pp. 1041-1043
-
-
Fryxell, J.M.1
Mosser, A.2
Sinclair, A.R.E.3
Packer, C.4
-
14
-
-
61449220353
-
Application of the homotopy perturbation method to coupled system of partial differential equations with time fractional derivatives
-
Ganji Z.Z., Ganji D.D., Jafari H., Rostamian M. Application of the homotopy perturbation method to coupled system of partial differential equations with time fractional derivatives. Topol. Meth. Nonlin. Anal. 2008, 31:341-348.
-
(2008)
Topol. Meth. Nonlin. Anal.
, vol.31
, pp. 341-348
-
-
Ganji, Z.Z.1
Ganji, D.D.2
Jafari, H.3
Rostamian, M.4
-
15
-
-
37049248026
-
Enriched predator-prey systems: theoretical stability
-
Gilpin M.E. Enriched predator-prey systems: theoretical stability. Science 1972, 177:902-904.
-
(1972)
Science
, vol.177
, pp. 902-904
-
-
Gilpin, M.E.1
-
16
-
-
0032307661
-
Approximate analytical solution for seepage flow with fractional derivatives in porous media
-
He J.H. Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comp. Meth. Appl. Mech. Eng. 1998, 167:57-68.
-
(1998)
Comp. Meth. Appl. Mech. Eng.
, vol.167
, pp. 57-68
-
-
He, J.H.1
-
17
-
-
0032672778
-
Homotopy perturbation technique
-
He J.H. Homotopy perturbation technique. Comp. Meth. Appl. Mech. Eng. 1999, 178:257-262.
-
(1999)
Comp. Meth. Appl. Mech. Eng.
, vol.178
, pp. 257-262
-
-
He, J.H.1
-
18
-
-
0033702384
-
A coupling method of a homotopy technique and a perturbation technique for nonlinear problems
-
He J.H. A coupling method of a homotopy technique and a perturbation technique for nonlinear problems. Int. J. Non. Mech. 2000, 35:37-43.
-
(2000)
Int. J. Non. Mech.
, vol.35
, pp. 37-43
-
-
He, J.H.1
-
19
-
-
18844391045
-
A new perturbation technique which is also valid for large parameters
-
He J.H. A new perturbation technique which is also valid for large parameters. Chaos, Solitons Fractals 2005, 26:827-833.
-
(2005)
Chaos, Solitons Fractals
, vol.26
, pp. 827-833
-
-
He, J.H.1
-
20
-
-
18844426016
-
Application of homotopy perturbation method to nonlinear wave equations
-
He J.H. Application of homotopy perturbation method to nonlinear wave equations. Chaos, Solitons Fractals 2005, 26:695-700.
-
(2005)
Chaos, Solitons Fractals
, vol.26
, pp. 695-700
-
-
He, J.H.1
-
21
-
-
17844387391
-
Homotopy perturbation method for bifurcation of nonlinear problems
-
He J.H. Homotopy perturbation method for bifurcation of nonlinear problems. Int. J. Nonlin. Sci. Numer. Simul. 2005, 6:207-208.
-
(2005)
Int. J. Nonlin. Sci. Numer. Simul.
, vol.6
, pp. 207-208
-
-
He, J.H.1
-
22
-
-
27744531467
-
Periodic solutions and bifurcations of delay-differential equations
-
He J.H. Periodic solutions and bifurcations of delay-differential equations. Phys. Lett. A 2005, 347:228-230.
-
(2005)
Phys. Lett. A
, vol.347
, pp. 228-230
-
-
He, J.H.1
-
23
-
-
33645972898
-
Some asymptotic methods for strongly nonlinear equations
-
He J.H. Some asymptotic methods for strongly nonlinear equations. Int. J. Modern Phys. B 2006, 20:1141-1149.
-
(2006)
Int. J. Modern Phys. B
, vol.20
, pp. 1141-1149
-
-
He, J.H.1
-
24
-
-
0035512366
-
Rich dynamics of a ratio-dependent one prey two-predator model
-
Hsu S.B., Hwang T.W., Kuang Y. Rich dynamics of a ratio-dependent one prey two-predator model. J. Math. Bio. 2001, 43:377-396.
-
(2001)
J. Math. Bio.
, vol.43
, pp. 377-396
-
-
Hsu, S.B.1
Hwang, T.W.2
Kuang, Y.3
-
25
-
-
0033061694
-
About deterministic extinction in ratio-dependent predator-prey models
-
Jost C., Arino O., Arditi R. About deterministic extinction in ratio-dependent predator-prey models. Bull. Math. Biol. 1999, 61:19-32.
-
(1999)
Bull. Math. Biol.
, vol.61
, pp. 19-32
-
-
Jost, C.1
Arino, O.2
Arditi, R.3
-
26
-
-
0002963435
-
Double strange attractors in rigid body motion with linear feedback control
-
Leipnik R.B., Newton T.A. Double strange attractors in rigid body motion with linear feedback control. Phys. Lett. A 1981, 86:63-67.
-
(1981)
Phys. Lett. A
, vol.86
, pp. 63-67
-
-
Leipnik, R.B.1
Newton, T.A.2
-
28
-
-
58849165691
-
Deterministic and stochastic analysis of a ratio-dependent predator-prey system with delay
-
Maiti A., Jana M.M., Samanta G.P. Deterministic and stochastic analysis of a ratio-dependent predator-prey system with delay. Nonlin. Anal. Modell. Controll. 2007, 12:383-390.
-
(2007)
Nonlin. Anal. Modell. Controll.
, vol.12
, pp. 383-390
-
-
Maiti, A.1
Jana, M.M.2
Samanta, G.P.3
-
29
-
-
79953039158
-
-
An essay on the principle of population. Reprinted from 1798 edition, Johnson, London, as Malthus population: the first essay. Ann Arbor Paper-backs, University of Michigan, Ann Arbor Michigan, USA.
-
Malthus, T.R., 1959. An essay on the principle of population. Reprinted from 1798 edition, Johnson, London, as Malthus population: the first essay. Ann Arbor Paper-backs, University of Michigan, Ann Arbor Michigan, USA.
-
(1959)
-
-
Malthus, T.R.1
-
30
-
-
0039645998
-
Limit cycles in prey predator communities
-
May R.M. Limit cycles in prey predator communities. Science 1972, 177:900-902.
-
(1972)
Science
, vol.177
, pp. 900-902
-
-
May, R.M.1
-
31
-
-
34247395044
-
Homotopy perturbation method for nonlinear partial differential equations of fractional order
-
Momani S., Odibat Z. Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys. Lett. A 2007, 365:345-350.
-
(2007)
Phys. Lett. A
, vol.365
, pp. 345-350
-
-
Momani, S.1
Odibat, Z.2
-
32
-
-
50949099510
-
Algorithms for nonlinear fractional partial differential equations: a selection of numerical methods
-
Momani S., Odibat Z., Hashim I. Algorithms for nonlinear fractional partial differential equations: a selection of numerical methods. Topol. Meth. Nonlin. Anal. 2008, 31:211-226.
-
(2008)
Topol. Meth. Nonlin. Anal.
, vol.31
, pp. 211-226
-
-
Momani, S.1
Odibat, Z.2
Hashim, I.3
-
33
-
-
46649116095
-
Application of the homotopy perturbation method to linear and nonlinear Schrödinger equations
-
Mousa M.M., Ragab S.F. Application of the homotopy perturbation method to linear and nonlinear Schrödinger equations. Z. Fur Naturforsch. Sec. 2008, 63a:140.
-
(2008)
Z. Fur Naturforsch. Sec.
, vol.63 A
, pp. 140
-
-
Mousa, M.M.1
Ragab, S.F.2
-
34
-
-
50949095668
-
Applications of variational iteration and homotopy perturbation methods to fractional evolution equations
-
Odibat Z., Momani S. Applications of variational iteration and homotopy perturbation methods to fractional evolution equations. Topol. Meth. Nonlin. Anal. 2008, 31:227-234.
-
(2008)
Topol. Meth. Nonlin. Anal.
, vol.31
, pp. 227-234
-
-
Odibat, Z.1
Momani, S.2
-
35
-
-
0015243940
-
Paradox of enrichment: destabilization of exploitation ecosystems in ecological time
-
Rosenzweig M.L. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 1971, 171:385-387.
-
(1971)
Science
, vol.171
, pp. 385-387
-
-
Rosenzweig, M.L.1
-
36
-
-
0000014340
-
Reply to Gilpin
-
Rosenzweig M.L. Reply to Gilpin. Science 1972, 177:904.
-
(1972)
Science
, vol.177
, pp. 904
-
-
Rosenzweig, M.L.1
-
37
-
-
35348886158
-
Chaos in the Newton-Leipnik system with fractional order
-
Sheu L.J., Chen H.K., Chen J.H., Tam L.M., Chen W.C., Lin K.T., Kang Y. Chaos in the Newton-Leipnik system with fractional order. Chaos, Solitons Fractals 2008, 36:98-103.
-
(2008)
Chaos, Solitons Fractals
, vol.36
, pp. 98-103
-
-
Sheu, L.J.1
Chen, H.K.2
Chen, J.H.3
Tam, L.M.4
Chen, W.C.5
Lin, K.T.6
Kang, Y.7
-
38
-
-
65349110270
-
Parametric analysis and impulsive synchronization of fractional-order Newton-Leipnik systems
-
Sheu L.J., Tam L.M., Lao S.K., Kang Y., Lin K.T., Chen J.H., Chen H.K. Parametric analysis and impulsive synchronization of fractional-order Newton-Leipnik systems. Int. J. Nonlin. Sci. Numer. Simul. 2009, 10:33.
-
(2009)
Int. J. Nonlin. Sci. Numer. Simul.
, vol.10
, pp. 33
-
-
Sheu, L.J.1
Tam, L.M.2
Lao, S.K.3
Kang, Y.4
Lin, K.T.5
Chen, J.H.6
Chen, H.K.7
-
39
-
-
0001119103
-
Notice sur la loi que la population suit dans son accroissement
-
Verhulst P.F. Notice sur la loi que la population suit dans son accroissement. Corr. Math. Phys. 1838, 10:113-121.
-
(1838)
Corr. Math. Phys.
, vol.10
, pp. 113-121
-
-
Verhulst, P.F.1
-
40
-
-
0002604954
-
Variazioni e fluttuazioni del numero di individui in specie animali conviventi
-
Volterra V. Variazioni e fluttuazioni del numero di individui in specie animali conviventi. Mem. Accd. Linc. 1926, 2:31-113.
-
(1926)
Mem. Accd. Linc.
, vol.2
, pp. 31-113
-
-
Volterra, V.1
-
41
-
-
0035464834
-
Global dynamics of a ratio-dependent predator-prey system
-
Xiao D., Ruan S. Global dynamics of a ratio-dependent predator-prey system. J. Math. Biol. 2001, 43:268-290.
-
(2001)
J. Math. Biol.
, vol.43
, pp. 268-290
-
-
Xiao, D.1
Ruan, S.2
-
42
-
-
42449138829
-
Synchronization between two different fractional-order chaotic systems
-
Xu C., Wu G., Feng J.W., Zhang W. Synchronization between two different fractional-order chaotic systems. Int. J. Nonlin. Sci. Num. Simul. 2008, 9:89-95.
-
(2008)
Int. J. Nonlin. Sci. Num. Simul.
, vol.9
, pp. 89-95
-
-
Xu, C.1
Wu, G.2
Feng, J.W.3
Zhang, W.4
-
43
-
-
67249166170
-
An algorithm for solving the fractional nonlinear Schrödinger equation by means of the homotopy perturbation method
-
Yildirim A. An algorithm for solving the fractional nonlinear Schrödinger equation by means of the homotopy perturbation method. Int. J. Nonlin. Sci. Num. Simul. 2009, 10:445-451.
-
(2009)
Int. J. Nonlin. Sci. Num. Simul.
, vol.10
, pp. 445-451
-
-
Yildirim, A.1
|