-
1
-
-
0017809961
-
Growth of a photosynthetic bacterium anaerobically in darkness, supported by "oxidant-dependent" sugar fermentation
-
Madigan, M. T., and H. Gest. 1978. Growth of a photosynthetic bacterium anaerobically in darkness, supported by "oxidant-dependent" sugar fermentation. Arch. Microbiol. 117:119-122.
-
(1978)
Arch. Microbiol.
, vol.117
, pp. 119-122
-
-
Madigan, M.T.1
Gest, H.2
-
2
-
-
2942558361
-
RegB/RegA, a highly conserved redox-responding global two-component regulatory system
-
Elsen, S., L. R. Swem, D. L. Swem, and C. E. Bauer. 2004. RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Microbiol. Mol. Biol. Rev. 68:263-279.
-
(2004)
Microbiol. Mol. Biol. Rev.
, vol.68
, pp. 263-279
-
-
Elsen, S.1
Swem, L.R.2
Swem, D.L.3
Bauer, C.E.4
-
3
-
-
0028019047
-
Identification and molecular genetic characterization of a sensor kinase responsible for coordinately regulating light harvesting and reaction center gene expression in response to anaerobiosis
-
Mosley, C. S., J. Y. Suzuki, and C. E. Bauer. 1994. Identification and molecular genetic characterization of a sensor kinase responsible for coordinately regulating light harvesting and reaction center gene expression in response to anaerobiosis. J. Bacteriol. 176:7566-7573.
-
(1994)
J. Bacteriol.
, vol.176
, pp. 7566-7573
-
-
Mosley, C.S.1
Suzuki, J.Y.2
Bauer, C.E.3
-
4
-
-
55949136931
-
RegB/RegA, a global redox-responding two-component system
-
In R. Utsumi, (ed.), Landes Bioscience Eurekah, Georgetown, TX
-
Wu, J., and C. E. Bauer. 2007. RegB/RegA, a global redox-responding two-component system, p. 131-148. In R. Utsumi, (ed.), Bacterial signal transduction: network and drug targets. Landes Bioscience Eurekah, Georgetown, TX.
-
(2007)
Bacterial signal transduction: Network and drug targets
, pp. 131-148
-
-
Wu, J.1
Bauer, C.E.2
-
5
-
-
0028924678
-
Isolation and in vitro phosphorylation of sensory transduction components controlling anaerobic induction of light harvesting and reaction center gene expression in Rhodobacter capsulatus
-
Inoue, K., J. L. Kouadio, C. S. Mosley, and C. E. Bauer. 1995. Isolation and in vitro phosphorylation of sensory transduction components controlling anaerobic induction of light harvesting and reaction center gene expression in Rhodobacter capsulatus. Biochemistry 34:391-396.
-
(1995)
Biochemistry
, vol.34
, pp. 391-396
-
-
Inoue, K.1
Kouadio, J.L.2
Mosley, C.S.3
Bauer, C.E.4
-
6
-
-
0033523121
-
Autophosphorylation, phosphotransfer, and DNA-binding properties of the RegB/RegA twocomponent regulatory system in Rhodobacter capsulatus
-
Bird, T. H., S. Du, and C. E. Bauer. 1999. Autophosphorylation, phosphotransfer, and DNA-binding properties of the RegB/RegA twocomponent regulatory system in Rhodobacter capsulatus. J. Biol. Chem. 274:16343-16348.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 16343-16348
-
-
Bird, T.H.1
Du, S.2
Bauer, C.E.3
-
7
-
-
0141848318
-
Signal transduction by the global regulator RegB is mediated by a redox-active cysteine
-
Swem, L. R., B. J. Kraft, D. L. Swem, A. T. Setterdahl, S. Masuda, D. B. Knaff, J. M. Zaleski, and C. E. Bauer. 2003. Signal transduction by the global regulator RegB is mediated by a redox-active cysteine. EMBO J. 22:4699-4708.
-
(2003)
EMBO J.
, vol.22
, pp. 4699-4708
-
-
Swem, L.R.1
Kraft, B.J.2
Swem, D.L.3
Setterdahl, A.T.4
Masuda, S.5
Knaff, D.B.6
Zaleski, J.M.7
Bauer, C.E.8
-
8
-
-
33646594462
-
Identification of a ubiquinone-binding site that affects autophosphorylation of the sensor kinase RegB
-
Swem, L. R., X. Gong, C. A. Yu, and C. E. Bauer. 2006. Identification of a ubiquinone-binding site that affects autophosphorylation of the sensor kinase RegB. J. Biol. Chem. 281:6768-6775.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 6768-6775
-
-
Swem, L.R.1
Gong, X.2
Yu, C.A.3
Bauer, C.E.4
-
9
-
-
47249127306
-
Redox-state dynamics of ubiquinone-10 imply cooperative regulation of photosynthetic membrane expression in Rhodospirillum rubrum
-
Grammel, H., and R. Ghosh. 2008. Redox-state dynamics of ubiquinone-10 imply cooperative regulation of photosynthetic membrane expression in Rhodospirillum rubrum. J. Bacteriol. 190:4912-4921.
-
(2008)
J. Bacteriol.
, vol.190
, pp. 4912-4921
-
-
Grammel, H.1
Ghosh, R.2
-
10
-
-
34547641964
-
Dominant role of the cbb3 oxidase in regulation of photosynthesis gene expression through the PrrBA system in Rhodobacter sphaeroides 2.4.1
-
Kim, Y. J., I. J. Ko, J. M. Lee, H. Y. Kang, Y. M. Kim, S. Kaplan, and J. I. Oh. 2007. Dominant role of the cbb3 oxidase in regulation of photosynthesis gene expression through the PrrBA system in Rhodobacter sphaeroides 2.4.1. J. Bacteriol. 189:5617-5625.
-
(2007)
J. Bacteriol.
, vol.189
, pp. 5617-5625
-
-
Kim, Y.J.1
Ko, I.J.2
Lee, J.M.3
Kang, H.Y.4
Kim, Y.M.5
Kaplan, S.6
Oh, J.I.7
-
11
-
-
0035933597
-
Quinones as the redox signal for the arc two-component system of bacteria
-
Georgellis, D., O. Kwon, and E. C. Lin. 2001. Quinones as the redox signal for the arc two-component system of bacteria. Science 292:2314-2316.
-
(2001)
Science
, vol.292
, pp. 2314-2316
-
-
Georgellis, D.1
Kwon, O.2
Lin, E.C.3
-
12
-
-
4444236656
-
Identification of a quinone-sensitive redox switch in the ArcB sensor kinase
-
Malpica, R., B. Franco, C. Rodriguez, O. Kwon, and D. Georgellis. 2004. Identification of a quinone-sensitive redox switch in the ArcB sensor kinase. Proc. Natl. Acad. Sci. U. S. A. 101:13318-13323.
-
(2004)
Proc. Natl. Acad. Sci. U. S. A.
, vol.101
, pp. 13318-13323
-
-
Malpica, R.1
Franco, B.2
Rodriguez, C.3
Kwon, O.4
Georgellis, D.5
-
13
-
-
0034714289
-
Disulfide bonds are generated by quinone reduction
-
Bader, M. W., T. Xie, C. A. Yu, and J. C. Bardwell. 2000. Disulfide bonds are generated by quinone reduction. J. Biol. Chem. 275:26082-26088.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 26082-26088
-
-
Bader, M.W.1
Xie, T.2
Yu, C.A.3
Bardwell, J.C.4
-
14
-
-
0028826926
-
Cloning, gene sequencing, and expression of the small molecular mass ubiquinone-binding protein of mitochondrial ubiquinol-cytochrome c reductase
-
Yu, L., K. Deng, and C. A. Yu. 1995. Cloning, gene sequencing, and expression of the small molecular mass ubiquinone-binding protein of mitochondrial ubiquinol-cytochrome c reductase. J. Biol. Chem. 270:25634-25638.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 25634-25638
-
-
Yu, L.1
Deng, K.2
Yu, C.A.3
-
15
-
-
0033605579
-
Identification of quinone-binding and heme-ligating residues of the smallest membrane-anchoring subunit (QPs3) of bovine heart mitochondrial succinate: Ubiquinone reductase
-
Shenoy, S. K., L. Yu, and C. Yu. 1999. Identification of quinone-binding and heme-ligating residues of the smallest membrane-anchoring subunit (QPs3) of bovine heart mitochondrial succinate:ubiquinone reductase. J. Biol. Chem. 274:8717-8722.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 8717-8722
-
-
Shenoy, S.K.1
Yu, L.2
Yu, C.3
-
16
-
-
0345293146
-
On the value of c: Can low affinity systems be studied by isothermal titration calorimetry?
-
Turnbull, W. B., and A. H. Daranas. 2003. On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J. Am. Chem. Soc. 125:14859-14866.
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 14859-14866
-
-
Turnbull, W.B.1
Daranas, A.H.2
-
17
-
-
37549033509
-
Isothermal titration calorimetry at very low c
-
Tellinghuisen, J. 2008. Isothermal titration calorimetry at very low c. Anal. Biochem. 373:395-397.
-
(2008)
Anal. Biochem.
, vol.373
, pp. 395-397
-
-
Tellinghuisen, J.1
-
18
-
-
27744569982
-
Optimizing experimental parameters in isothermal titration calorimetry
-
Tellinghuisen, J. 2005. Optimizing experimental parameters in isothermal titration calorimetry. J. Phys. Chem. B 109:20027-20035.
-
(2005)
J. Phys. Chem. B
, vol.109
, pp. 20027-20035
-
-
Tellinghuisen, J.1
-
19
-
-
23244465347
-
Binding dynamics at the quinone reduction (Qi) site influence the equilibrium interactions of the iron sulfur protein and hydroquinone oxidation (Qo) site of the cytochrome bc1 complex
-
Cooley, J. W., T. Ohnishi, and F. Daldal. 2005. Binding dynamics at the quinone reduction (Qi) site influence the equilibrium interactions of the iron sulfur protein and hydroquinone oxidation (Qo) site of the cytochrome bc1 complex. Biochemistry 44:10520-10532.
-
(2005)
Biochemistry
, vol.44
, pp. 10520-10532
-
-
Cooley, J.W.1
Ohnishi, T.2
Daldal, F.3
-
20
-
-
64549137048
-
Across membrane communication between the Q(o) and Q(i) active sites of cytochrome bc(1)
-
Cooley, J. W., D. W. Lee, and F. Daldal. 2009. Across membrane communication between the Q(o) and Q(i) active sites of cytochrome bc(1). Biochemistry 48:1888-1899.
-
(2009)
Biochemistry
, vol.48
, pp. 1888-1899
-
-
Cooley, J.W.1
Lee, D.W.2
Daldal, F.3
-
21
-
-
0034640331
-
Proton and electron transfer in bacterial reaction centers
-
Okamura, M. Y., M. L. Paddock, M. S. Graige, and G. Feher. 2000. Proton and electron transfer in bacterial reaction centers. Biochim. Biophys. Acta 1458:148-163.
-
(2000)
Biochim. Biophys. Acta
, vol.1458
, pp. 148-163
-
-
Okamura, M.Y.1
Paddock, M.L.2
Graige, M.S.3
Feher, G.4
-
22
-
-
0021758697
-
Electron and proton transfers through quinones and cytochrome bc complexes
-
Rich, P. R. 1984. Electron and proton transfers through quinones and cytochrome bc complexes. Biochim. Biophys. Acta 768:53-79.
-
(1984)
Biochim. Biophys. Acta
, vol.768
, pp. 53-79
-
-
Rich, P.R.1
-
25
-
-
33750813327
-
Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide bond generation
-
Inaba, K., S. Murakami, M. Suzuki, A. Nakagawa, E. Yamashita, K. Okada, and K. Ito. 2006. Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide bond generation. Cell 127:789-801.
-
(2006)
Cell
, vol.127
, pp. 789-801
-
-
Inaba, K.1
Murakami, S.2
Suzuki, M.3
Nakagawa, A.4
Yamashita, E.5
Okada, K.6
Ito, K.7
-
26
-
-
52049098074
-
NMR solution structure of the integral membrane enzyme DsbB: Functional insights into DsbB-catalyzed disulfide bond formation
-
Zhou, Y., T. Cierpicki, R. H. Jimenez, S. M. Lukasik, J. F. Ellena, D. S. Cafiso, H. Kadokura, J. Beckwith, and J. H. Bushweller. 2008. NMR solution structure of the integral membrane enzyme DsbB: functional insights into DsbB-catalyzed disulfide bond formation. Mol. Cell 31:896-908.
-
(2008)
Mol. Cell
, vol.31
, pp. 896-908
-
-
Zhou, Y.1
Cierpicki, T.2
Jimenez, R.H.3
Lukasik, S.M.4
Ellena, J.F.5
Cafiso, D.S.6
Kadokura, H.7
Beckwith, J.8
Bushweller, J.H.9
-
27
-
-
0034598939
-
A motif for quinone binding sites in respiratory and photosynthetic systems
-
Fisher, N., and P. R. Rich. 2000. A motif for quinone binding sites in respiratory and photosynthetic systems. J. Mol. Biol. 296:1153-1162.
-
(2000)
J. Mol. Biol.
, vol.296
, pp. 1153-1162
-
-
Fisher, N.1
Rich, P.R.2
-
28
-
-
0037815067
-
The ubiquinone-binding site in NADH: Ubiquinone oxidoreductase from Escherichia coli
-
Gong, X., T. Xie, L. Yu, M. Hesterberg, D. Scheide, T. Friedrich, and C. A. Yu. 2003. The ubiquinone-binding site in NADH:ubiquinone oxidoreductase from Escherichia coli. J. Biol. Chem. 278:25731-25737.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 25731-25737
-
-
Gong, X.1
Xie, T.2
Yu, L.3
Hesterberg, M.4
Scheide, D.5
Friedrich, T.6
Yu, C.A.7
-
29
-
-
0037127202
-
Identification of the ubiquinone-binding domain in the disulfide catalyst disulfide bond protein B
-
Xie, T., L. Yu, M. W. Bader, J. C. Bardwell, and C. A. Yu. 2002. Identification of the ubiquinone-binding domain in the disulfide catalyst disulfide bond protein B. J. Biol. Chem. 277:1649-1652.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 1649-1652
-
-
Xie, T.1
Yu, L.2
Bader, M.W.3
Bardwell, J.C.4
Yu, C.A.5
-
30
-
-
0033788953
-
The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site
-
Abramson, J., S. Riistama, G. Larsson, A. Jasaitis, M. Svensson-Ek, L. Laakkonen, A. Puustinen, S. Iwata, and M. Wikstrom. 2000. The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site. Nat. Struct. Biol. 7:910-917.
-
(2000)
Nat. Struct. Biol.
, vol.7
, pp. 910-917
-
-
Abramson, J.1
Riistama, S.2
Larsson, G.3
Jasaitis, A.4
Svensson-Ek, M.5
Laakkonen, L.6
Puustinen, A.7
Iwata, S.8
Wikstrom, M.9
-
31
-
-
78149470179
-
Ubiquinol-binding site in the alternative oxidase: Mutagenesis reveals features important for substrate binding and inhibition
-
Albury, M. S., C. Elliott, and A. L. Moore. 2010. Ubiquinol-binding site in the alternative oxidase: mutagenesis reveals features important for substrate binding and inhibition. Biochim. Biophys. Acta. 1797:1933-1939.
-
(2010)
Biochim. Biophys. Acta.
, vol.1797
, pp. 1933-1939
-
-
Albury, M.S.1
Elliott, C.2
Moore, A.L.3
-
32
-
-
0035927420
-
Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution
-
Jordan, P., P. Fromme, H. T. Witt, O. Klukas, W. Saenger, and N. Krauss. 2001. Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Nature 411:909-917.
-
(2001)
Nature
, vol.411
, pp. 909-917
-
-
Jordan, P.1
Fromme, P.2
Witt, H.T.3
Klukas, O.4
Saenger, W.5
Krauss, N.6
-
33
-
-
37449004250
-
Crystal structure of the NADH: Quinone oxidoreductase WrbA from Escherichia coli
-
Andrade, S. L., E. V. Patridge, J. G. Ferry, and O. Einsle. 2007. Crystal structure of the NADH:quinone oxidoreductase WrbA from Escherichia coli. J. Bacteriol. 189:9101-9107.
-
(2007)
J. Bacteriol.
, vol.189
, pp. 9101-9107
-
-
Andrade, S.L.1
Patridge, E.V.2
Ferry, J.G.3
Einsle, O.4
-
34
-
-
0011253969
-
Role of the reaction center in photosynthesis
-
In R. K. Clayton and W. R. Sistrom (ed.), Plenum Press, New York, NY
-
Parson W. 1978. Role of the reaction center in photosynthesis, p. 317-322. In R. K. Clayton and W. R. Sistrom (ed.), The photosynthetic bacteria. Plenum Press, New York, NY.
-
(1978)
The photosynthetic bacteria
, pp. 317-322
-
-
Parson, W.1
-
35
-
-
38349058407
-
Modeling the electron transport chain of purple non-sulfur bacteria
-
Klamt, S., H. Grammel, R. Straube, R. Ghosh, and E. D. Gilles. 2008. Modeling the electron transport chain of purple non-sulfur bacteria. Mol. Syst. Biol. 4:156-174.
-
(2008)
Mol. Syst. Biol.
, vol.4
, pp. 156-174
-
-
Klamt, S.1
Grammel, H.2
Straube, R.3
Ghosh, R.4
Gilles, E.D.5
|