메뉴 건너뛰기




Volumn 32, Issue 3, 2011, Pages 287-303

Automated detection of sleep apnea from electrocardiogram signals using nonlinear parameters

Author keywords

ANN; apnea; correlation dimension; ECG; Hurst exponent; hypopnoea; sleep apnoea

Indexed keywords

BIOMEDICAL SIGNAL PROCESSING; CLASSIFICATION (OF INFORMATION); ELECTROCARDIOGRAPHY; FRACTAL DIMENSION; LYAPUNOV METHODS; PATIENT MONITORING; PHYSIOLOGICAL MODELS; SLEEP RESEARCH;

EID: 79952166244     PISSN: 09673334     EISSN: 13616579     Source Type: Journal    
DOI: 10.1088/0967-3334/32/3/002     Document Type: Article
Times cited : (94)

References (48)
  • 8
    • 84887403863 scopus 로고    scopus 로고
    • last accessed on 18 August 2009
    • Data analysis software http://www.mathworks.com/ (last accessed on 18 August 2009)
    • Data Analysis Software
  • 11
    • 4344653800 scopus 로고    scopus 로고
    • Automated detection of obstructive sleep apnoea at different time scales using the electrocardiogram
    • DOI 10.1088/0967-3334/25/4/015, PII S0967333404763133
    • de Chazal P, Penzel T and Heneghan C 2004 Automated detection of obstructive sleep apnoea at different time scales using the electrocardiogram Physiol. Meas. 25 967-83 (Pubitemid 39121178)
    • (2004) Physiological Measurement , vol.25 , Issue.4 , pp. 967-983
    • De Chazal, P.1    Penzel, T.2    Heneghan, C.3
  • 14
    • 34548696055 scopus 로고
    • Independent coordinates for strange attractors from mutual information
    • Fraser A M and Swinney H L 1986 Independent coordinates for strange attractors from mutual information Phys. Rev. A 33 1134-40
    • (1986) Phys. Rev. , vol.33 , Issue.2 , pp. 1134-1140
    • Fraser, A.M.1    Swinney, H.L.2
  • 15
    • 27944444972 scopus 로고    scopus 로고
    • ECG techniques and technologies
    • DOI 10.1016/j.emc.2005.08.013, PII S0733862705000830
    • Garvey J L 2006 ECG techniques and technologies Emerg. Med. Clin. North Am. 24 209-25 (Pubitemid 41674503)
    • (2006) Emergency Medicine Clinics of North America , vol.24 , Issue.1 , pp. 209-225
    • Garvey, J.L.1
  • 17
    • 40749093037 scopus 로고
    • Measuring the strangeness of strange attractors
    • Grossberger P and Procassia I 1983 Measuring the strangeness of strange attractors Physica D 9 189-208
    • (1983) Physica , vol.9 , Issue.1-2 , pp. 189-208
    • Grossberger, P.1    Procassia, I.2
  • 19
    • 45549113571 scopus 로고
    • Approach to an irregular time series on the basis of the fractal theory
    • Higuchi T 1988 Approach to an irregular time series on the basis of the fractal theory Physica D 31 277-83
    • (1988) Physica , vol.31 , Issue.2 , pp. 277-283
    • Higuchi, T.1
  • 20
    • 35949006791 scopus 로고
    • Determining embedding dimension for phase-space reconstruction using a geometrical construction
    • Kennel M B, Brown R and Abarbanel H D I 1992 Determining embedding dimension for phase-space reconstruction using a geometrical construction Phys. Rev. A 45 3403
    • (1992) Phys. Rev. , vol.45 , Issue.6 , pp. 3403
    • Kennel, M.B.1    Brown, R.2    Abarbanel, H.D.I.3
  • 21
    • 0035113713 scopus 로고    scopus 로고
    • Breath-to-breath variability correlates with apnea-hypopnea index in obstructive sleep apnea
    • DOI 10.1378/chest.119.2.451
    • Kowallik P, Jacobi I and Jirmann A 2001 Breath-to-breath variability correlates with apnea-hypopnea index in obstructive sleep apnea Chest 119 451-9 (Pubitemid 32163756)
    • (2001) Chest , vol.119 , Issue.2 , pp. 451-459
    • Kowallik, P.1    Jacobi, I.2    Jirmann, A.3    Meesmann, M.4    Schmidt, M.5    Wirtz, H.6
  • 22
    • 61549130874 scopus 로고    scopus 로고
    • Nonlinear analysis of EEG signals: Surrogate data analysis
    • Kunhimangalam R, Joseph P K and Sujith O K 2008 Nonlinear analysis of EEG signals: surrogate data analysis IRBM J. 29 239-44
    • (2008) IRBM J. , vol.29 , pp. 239-244
    • Kunhimangalam, R.1    Joseph, P.K.2    Sujith, O.K.3
  • 23
    • 0024771475 scopus 로고
    • Pattern classification using neural networks
    • Lippman R P 1989 Pattern classification using neural networks IEEE Commun. Mag. 27 47-64
    • (1989) IEEE Commun. Mag. , vol.27 , Issue.11 , pp. 47-64
    • Lippman, R.P.1
  • 24
    • 62949245278 scopus 로고    scopus 로고
    • Dynamic analysis of multi lead ECG recordings for detection and categorization of respiratory events during sleep
    • Maier C, Rödler V, Laguna P and Dickhaus H 2007 Dynamic analysis of multi lead ECG recordings for detection and categorization of respiratory events during sleep Comput. Cardiol. 34 493-6
    • (2007) Comput. Cardiol. , vol.34 , pp. 493-496
    • Maier, C.1    Rödler, V.2    Laguna, P.3    Dickhaus, H.4
  • 28
    • 0034480944 scopus 로고    scopus 로고
    • Detection of obstructive sleep apnea from cardiac interbeat interval time series
    • Mietus J E, Peng C K, Ivanov P Ch and Goldberger A L 2000 Detection of obstructive sleep apnea from cardiac interbeat interval time series Comp. Cardio. 27 753-6 (Pubitemid 32188017)
    • (2000) Computers in Cardiology , pp. 753-756
    • Mietus, J.E.1    Peng, C.K.2    Ivanov, P.Ch.3    Goldberger, A.L.4
  • 31
    • 79952127743 scopus 로고    scopus 로고
    • accessed on November 2010
    • Nabili S and Verneuil A 2010 Sleep Apnea WebMD http://www.medicinenet. com/sleep-apnea/article.htm (accessed on November 2010)
    • (2010) Sleep Apnea WebMD
    • Nabili, S.1    Verneuil, A.2
  • 32
    • 61849182629 scopus 로고    scopus 로고
    • Variations in the accuracy of the ECG-based detection of obstructive sleep apnoea (OSA) for different numbers of ECG leads and categories of OSA events
    • Nilsen K, Zilberg E, Burton D, Khandoker A H and Palaniswami M 2008 Variations in the accuracy of the ECG-based detection of obstructive sleep apnoea (OSA) for different numbers of ECG leads and categories of OSA events Conf. Proc. IEEE Eng. Med. Biol. Soc. 1 3492-5
    • (2008) Conf. Proc. IEEE Eng. Med. Biol. Soc. , vol.1 , pp. 3492-3495
    • Nilsen, K.1    Zilberg, E.2    Burton, D.3    Khandoker, A.H.4    Palaniswami, M.5
  • 33
    • 38449090641 scopus 로고    scopus 로고
    • Detection of flow limitation in obstructive sleep apnea with an artificial neural network
    • Norman R G, Rapoport D M and Ayappa I 2007 Detection of flow limitation in obstructive sleep apnea with an artificial neural network Physiol. Meas. 28 1089
    • (2007) Physiol. Meas. , vol.28 , Issue.9 , pp. 1089
    • Norman, R.G.1    Rapoport, D.M.2    Ayappa, I.3
  • 35
    • 0026780669 scopus 로고
    • Quantification of hormone pulsatility via an approximate entropy algorithm
    • Pincus S M and Keefe D L 1992 Quantification of hormone pulsatility via an approximate entropy algorithm Am. J. Physiol. 262 E741-54
    • (1992) Am. J. Physiol. , vol.262
    • Pincus, S.M.1    Keefe, D.L.2
  • 38
    • 43949166788 scopus 로고
    • A practical method for calculating largest Lyapunov exponents from small data sets
    • Rosenstien M, Colins J J and De Luca C J 1993 A practical method for calculating largest Lyapunov exponents from small data sets Physica D 65 117-34
    • (1993) Physica , vol.65 , Issue.1-2 , pp. 117-134
    • Rosenstien, M.1    Colins, J.J.2    De Luca, C.J.3
  • 39
    • 3042582796 scopus 로고    scopus 로고
    • Detection of obstructive sleep apnea in pediatric subjects using surface lead electrocardiogram features
    • Shouldice R B, O'Brien L M, O'Brien C, de Chazal P, Gozal D and Heneghan C 2004 Detection of obstructive sleep apnea in pediatric subjects using surface lead electrocardiogram features Sleep 27 784-92 (Pubitemid 38823377)
    • (2004) Sleep , vol.27 , Issue.4 , pp. 784-792
    • Shouldice, R.B.1    O'Brien, L.M.2    O'Brien, C.3    De Chazal, P.4    Gozal, D.5    Heneghan, C.6
  • 42
    • 0000779360 scopus 로고
    • Detecting strange attractors in turbulence
    • Takens F 1981 Detecting strange attractors in turbulence Dynamical Systems and Turbulence ed D Rand and L S Young (Berlin: Springer)
    • (1981) Dynamical Systems and Turbulence , vol.898 , pp. 366
    • Takens, F.1
  • 43
    • 0033863374 scopus 로고    scopus 로고
    • Neural network analysis of oxygenation signals in infants during sleep
    • Taktak A F G, Simpson S, Patel S and Meyer G 2000 Neural network analysis of oxygenation signals in infants during sleep Physiol. Meas. 21 N11
    • (2000) Physiol. Meas. , vol.21 , Issue.3 , pp. 11
    • Taktak, A.F.G.1    Simpson, S.2    Patel, S.3    Meyer, G.4
  • 44
    • 44049111332 scopus 로고
    • Testing for nonlinearity in time series: The method of surrogate data
    • Theiler J, Eubank S, Longtin A, Galdrikian B and Farmer J D 1992 Testing for nonlinearity in time series: the method of surrogate data Physica D 58 77-94
    • (1992) Physica , vol.58 , Issue.1-4 , pp. 77-94
    • Theiler, J.1    Eubank, S.2    Longtin, A.3    Galdrikian, B.4    Farmer, J.D.5
  • 45
    • 24644464987 scopus 로고    scopus 로고
    • An electrocardiogram-based technique to assess cardiopulmonary coupling during sleep
    • Thomas R J, Mietus J E, Peng C K and Goldberger A L 2005 An electrocardiogram based technique to assess cardiopulmonary coupling during sleep Sleep 28 1151-61 (Pubitemid 41279513)
    • (2005) Sleep , vol.28 , Issue.9 , pp. 1151-1161
    • Thomas, R.J.1    Mietus, J.E.2    Peng, C.-K.3    Goldberger, A.L.4
  • 46
    • 0036721383 scopus 로고    scopus 로고
    • A novel method for the detection of apnea and hypopnea events in respiration signals
    • DOI 10.1109/TBME.2002.802009
    • Vrady P, Micsik T, Benedek S and Benyó Z 2002 A novel method for the detection of apnea and hypopnea events in respiratory signals IEEE Trans. Biomed. Eng. 49 936-42 (Pubitemid 34925462)
    • (2002) IEEE Transactions on Biomedical Engineering , vol.49 , Issue.9 , pp. 936-942
    • Varady, P.1    Micsik, T.2    Benedek, S.3    Benyo, Z.4
  • 47
    • 79952161296 scopus 로고    scopus 로고
    • VRA software (accessed on November 2010)
    • VRA software (accessed on November 2010) http://home.netcom.com/ ∼eugenek/download.html


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.