-
1
-
-
0000501656
-
Information theory as an extension of the maximum likelihood principle
-
Ed. B. N. Petrov and F. Csaki,Budapest: Akademiai Kiado
-
AKAIKE, H. (1973). Information theory as an extension of the maximum likelihood principle. In Second Int. Symp. Inform. Theory. Ed. B. N. Petrov and F. Csaki, pp. 267-81. Budapest: Akademiai Kiado.
-
(1973)
Second Int. Symp. Inform. Theory
, pp. 267-281
-
-
Akaike, H.1
-
2
-
-
0039530516
-
Variable length Markov chains
-
BÜHLMANN, P. & WYNER, A. J. (1999). Variable length Markov chains. Ann. Statist. 27, 480-513.
-
(1999)
Ann. Statist.
, vol.27
, pp. 480-513
-
-
Bühlmann, P.1
Wyner, A.J.2
-
3
-
-
0028991558
-
Model selection strategy in the analysis of capture-recapture data
-
BURNHAM, K. P., WHITE, G. C. & ANDERSON, D. R. (1995). Model selection strategy in the analysis of capture-recapture data. Biometrics 51, 888-98. (Pubitemid 26455238)
-
(1995)
Biometrics
, vol.51
, Issue.3
, pp. 888-898
-
-
Burnham, K.P.1
White, G.C.2
Anderson, D.R.3
-
4
-
-
0030451970
-
An application of profile-likelihood based confidence intervals to capture-recapture estimators
-
EVANS, M. A., KIM, H.-M. & O'BRIEN, T. E. (1996). An application of profile-likelihood based confidence intervals to capture-recapture estimators. J. Agric. Biol. Envir. Statist. 1, 131-40.
-
(1996)
J. Agric. Biol. Envir. Statist.
, vol.1
, pp. 131-140
-
-
Evans, M.A.1
Kim, H.-M.2
O'Brien, T.E.3
-
5
-
-
71249146456
-
Inference on population size in binomial detectability models
-
FEWSTER, R. & JUPP, P. (2009). Inference on population size in binomial detectability models. Biometrika 96, 805-20.
-
(2009)
Biometrika
, vol.96
, pp. 805-820
-
-
Fewster, R.1
Jupp, P.2
-
6
-
-
84947396376
-
A generalization of sampling without replacement from a finite universe
-
HORVITZ, D. G. & THOMPSON, D. J. (1952). A generalization of sampling without replacement from a finite universe. J. Am. Statist. Assoc. 47, 663-85.
-
(1952)
J. Am. Statist. Assoc.
, vol.47
, pp. 663-685
-
-
Horvitz, D.G.1
Thompson, D.J.2
-
7
-
-
0004131131
-
-
Wildlife Monographs. The Wildlife Society
-
OTIS, D. L., BURNHAM, K. P.,WHITE, G. C. & ANDERSON, D. R. (1978). Statistical Inference from Capture Data on Closed Animal Populations. Wildlife Monographs. The Wildlife Society.
-
(1978)
Statistical Inference from Capture Data on Closed Animal Populations
-
-
Otis, D.L.1
Burnham, K.P.2
White, G.C.3
Anderson, D.R.4
-
8
-
-
84950425550
-
Modeling capture, recapture, and removal statistics for estimation of demographic parameters for fish and wildlife populations: Past, present and future
-
POLLOCK, K. H. (1991).Modeling capture, recapture, and removal statistics for estimation of demographic parameters for fish and wildlife populations: past, present and future. J. Am. Statist. Assoc. 86, 225-38.
-
(1991)
J. Am. Statist. Assoc.
, vol.86
, pp. 225-238
-
-
Pollock, K.H.1
-
9
-
-
77049112043
-
Persistence models for mark-recapture
-
RAMSEY, F. & SEVERNS, P. (2010). Persistence models for mark-recapture. Envir. Ecol. Statist. 17, 97-109.
-
(2010)
Envir. Ecol. Statist.
, vol.17
, pp. 97-109
-
-
Ramsey, F.1
Severns, P.2
-
10
-
-
0038207141
-
Persistence and heterogeneity in habitat association studies using radio tracking
-
RAMSEY, F. & USNER, D. (2003). Persistence and heterogeneity in habitat association studies using radio tracking. Biometrics 59, 331-39.
-
(2003)
Biometrics
, vol.59
, pp. 331-339
-
-
Ramsey, F.1
Usner, D.2
-
11
-
-
0001388452
-
Estimating the size of a multinomial population
-
SANATHANAN, L. (1972). Estimating the size of a multinomial population. Ann. Math. Statist. 43, 142-52.
-
(1972)
Ann. Math. Statist.
, vol.43
, pp. 142-152
-
-
Sanathanan, L.1
-
12
-
-
33644867394
-
Modeling animals' behavioral response by Markov chain models for capture-recapture experiments
-
DOI 10.1111/j.1541-0420.2005.00372.x
-
YANG, H.-C. & CHAO, A. (2005). Modeling animals' behavioral response by Markov chain models for capture-recapture experiments. Biometrics 61, 1010-17. (Pubitemid 43906908)
-
(2005)
Biometrics
, vol.61
, Issue.4
, pp. 1010-1017
-
-
Yang, H.-C.1
Chao, A.2
|